These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32428433)

  • 1. Experience-Dependent Reorganization Drives Development of a Binocularly Unified Cortical Representation of Orientation.
    Chang JT; Whitney D; Fitzpatrick D
    Neuron; 2020 Jul; 107(2):338-350.e5. PubMed ID: 32428433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental Enrichment Rescues Binocular Matching of Orientation Preference in the Mouse Visual Cortex.
    Levine JN; Chen H; Gu Y; Cang J
    J Neurosci; 2017 Jun; 37(24):5822-5833. PubMed ID: 28500220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex.
    Salinas KJ; Figueroa Velez DX; Zeitoun JH; Kim H; Gandhi SP
    J Neurosci; 2017 Oct; 37(42):10125-10138. PubMed ID: 28924011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experience-dependent and independent binocular correspondence of receptive field subregions in mouse visual cortex.
    Sarnaik R; Wang BS; Cang J
    Cereb Cortex; 2014 Jun; 24(6):1658-70. PubMed ID: 23389996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A binocular synaptic network supports interocular response alignment in visual cortical neurons.
    Scholl B; Tepohl C; Ryan MA; Thomas CI; Kamasawa N; Fitzpatrick D
    Neuron; 2022 May; 110(9):1573-1584.e4. PubMed ID: 35123654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experience-dependent orientation plasticity in the visual cortex of rats chronically exposed to a single orientation.
    O'Hashi K; Miyashita M; Tanaka S
    Neurosci Res; 2007 May; 58(1):86-90. PubMed ID: 17300846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of direction selectivity in ferret visual cortex requires early visual experience.
    Li Y; Fitzpatrick D; White LE
    Nat Neurosci; 2006 May; 9(5):676-81. PubMed ID: 16604068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
    Scholl B; Pattadkal JJ; Priebe NJ
    J Neurosci; 2017 Jul; 37(27):6517-6526. PubMed ID: 28576937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and binocular matching of orientation selectivity in visual cortex: a computational model.
    Xu X; Cang J; Riecke H
    J Neurophysiol; 2020 Apr; 123(4):1305-1319. PubMed ID: 31913758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity to relative disparity in early visual cortex of pigmented and albino ferrets.
    Kalberlah C; Distler C; Hoffmann KP
    Exp Brain Res; 2009 Jan; 192(3):379-89. PubMed ID: 18726091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular Representation of Luminance Polarity in the Superficial Layers of Primary Visual Cortex.
    Smith GB; Whitney DE; Fitzpatrick D
    Neuron; 2015 Nov; 88(4):805-18. PubMed ID: 26590348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ipsilateral eye cortical maps are uniquely sensitive to binocular plasticity.
    Faguet J; Maranhao B; Smith SL; Trachtenberg JT
    J Neurophysiol; 2009 Feb; 101(2):855-61. PubMed ID: 19052109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of early monocular deprivation on response properties and afferents of nucleus of the optic tract in the ferret.
    Sengpiel F; Klauer S; Hoffmann KP
    Exp Brain Res; 1990; 83(1):190-9. PubMed ID: 2073938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Cross-Orientation Suppression and Size Tuning and the Role of Experience.
    Popović M; Stacy AK; Kang M; Nanu R; Oettgen CE; Wise DL; Fiser J; Van Hooser SD
    J Neurosci; 2018 Mar; 38(11):2656-2670. PubMed ID: 29431651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organization of modular activity in immature cortical networks.
    Mulholland HN; Kaschube M; Smith GB
    Nat Commun; 2024 May; 15(1):4145. PubMed ID: 38773083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience-Dependent Development of Feature-Selective Synchronization in the Primary Visual Cortex.
    Ishikawa AW; Komatsu Y; Yoshimura Y
    J Neurosci; 2018 Sep; 38(36):7852-7869. PubMed ID: 30064994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The temporal-spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation.
    Tong L; Xie Y; Yu H
    Neuroscience; 2016 Dec; 339():571-586. PubMed ID: 27746342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two Is Greater Than One: Binocular Visual Experience Drives Cortical Orientation Map Alignment.
    Skyberg R; Tanabe S; Cang J
    Neuron; 2020 Jul; 107(2):209-211. PubMed ID: 32702345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual experience promotes the isotropic representation of orientation preference.
    Coppola DM; White LE
    Vis Neurosci; 2004; 21(1):39-51. PubMed ID: 15137580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical period plasticity matches binocular orientation preference in the visual cortex.
    Wang BS; Sarnaik R; Cang J
    Neuron; 2010 Jan; 65(2):246-56. PubMed ID: 20152130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.