These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32428440)

  • 1. Exploration of Insulin Amyloid Polymorphism Using Raman Spectroscopy and Imaging.
    Ishigaki M; Morimoto K; Chatani E; Ozaki Y
    Biophys J; 2020 Jun; 118(12):2997-3007. PubMed ID: 32428440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation of oxytocin studied by laser Raman spectroscopy.
    Tu AT; Bjarnason JB; Hruby VJ
    Biochim Biophys Acta; 1978 Apr; 533(2):530-3. PubMed ID: 647024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of insulin amyloid fibrils by Raman spectroscopy.
    Ortiz C; Zhang D; Ribbe AE; Xie Y; Ben-Amotz D
    Biophys Chem; 2007 Jul; 128(2-3):150-5. PubMed ID: 17451866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational and thermal analyses of multicomponent crystal forms of the anti-HIV drugs lamivudine and zalcitabine.
    Martins FT; Guimarães FF; Honorato SB; Ayala AP; Ellena J
    J Pharm Biomed Anal; 2015 Jun; 110():76-82. PubMed ID: 25808817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Organization of Insulin Fibrils Based on Polarized Raman Spectroscopy: Evaluation of Existing Models.
    Sereda V; Sawaya MR; Lednev IK
    J Am Chem Soc; 2015 Sep; 137(35):11312-20. PubMed ID: 26278047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting the early onset of shear-induced fibril formation of insulin in situ.
    Webster GT; Dusting J; Balabani S; Blanch EW
    J Phys Chem B; 2011 Mar; 115(11):2617-26. PubMed ID: 21348502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes in seventeen cystine disulfide bridges of bovine serum albumin proved by Raman spectroscopy.
    Nakamura K; Era S; Ozaki Y; Sogami M; Hayashi T; Murakami M
    FEBS Lett; 1997 Nov; 417(3):375-8. PubMed ID: 9409755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Far-Off Resonance: Multiwavelength Raman Spectroscopy Probing Amide Bands of Amyloid-β-(37-42) Peptide.
    Talaikis M; Strazdaitė S; Žiaunys M; Niaura G
    Molecules; 2020 Aug; 25(15):. PubMed ID: 32759766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural features of α-synuclein amyloid fibrils revealed by Raman spectroscopy.
    Flynn JD; McGlinchey RP; Walker RL; Lee JC
    J Biol Chem; 2018 Jan; 293(3):767-776. PubMed ID: 29191831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-dependent disintegration of insulin amyloid fibrils monitored with atomic force microscopy and surface-enhanced Raman spectroscopy.
    Darussalam EY; Peterfi O; Deckert-Gaudig T; Roussille L; Deckert V
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 256():119672. PubMed ID: 33852991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman and infrared spectra of toxin gamma from the venom of the scorpion Tityus serrulatus.
    Arêas EP; Giglio JR; Arantes EC; Kawano Y
    Biochim Biophys Acta; 1987 Sep; 915(2):292-8. PubMed ID: 3651476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directly Probing Intermolecular Structural Change of a Core Fragment of β
    Shigeto S; Chang CF; Hiramatsu H
    J Phys Chem B; 2017 Jan; 121(3):490-496. PubMed ID: 28042925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous Refolding of Amyloid Fibrils from One Polymorph to Another Caused by Changes in Environmental Hydrophobicity.
    Quiñones-Ruiz T; Rosario-Alomar MF; Shanmugasundaram M; Ali MM; Lednev IK
    Biochemistry; 2022 Jul; 61(14):1456-1464. PubMed ID: 35786852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the alpha-helix structure.
    Désormeaux A; Blochet JE; Pézolet M; Marion D
    Biochim Biophys Acta; 1992 May; 1121(1-2):137-52. PubMed ID: 1599935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review.
    Kurouski D; Van Duyne RP; Lednev IK
    Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering.
    Deckert-Gaudig T; Kämmer E; Deckert V
    J Biophotonics; 2012 Mar; 5(3):215-9. PubMed ID: 22271749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d0 and Si-d3.
    Durig JR; Pan C; Guirgis GA
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Mar; 59(5):979-1002. PubMed ID: 12633715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nail Raman spectroscopy: A promising method for the diagnosis of onychomycosis. An ex vivo pilot study.
    Kourkoumelis N; Gaitanis G; Velegraki A; Bassukas ID
    Med Mycol; 2018 Jul; 56(5):551-558. PubMed ID: 29420760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism.
    VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH
    J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.