BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32428469)

  • 1. Establishment of homozygous knock-out sea urchins.
    Yaguchi S; Yaguchi J; Suzuki H; Kinjo S; Kiyomoto M; Ikeo K; Yamamoto T
    Curr Biol; 2020 May; 30(10):R427-R429. PubMed ID: 32428469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of knockout adult sea urchins by using a CRISPR-Cas9 system.
    Liu D; Awazu A; Sakuma T; Yamamoto T; Sakamoto N
    Dev Growth Differ; 2019 Aug; 61(6):378-388. PubMed ID: 31359433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temnopleurus reevesii as a new sea urchin model in genetics.
    Yaguchi S; Yaguchi J
    Dev Growth Differ; 2022 Jan; 64(1):59-66. PubMed ID: 34923630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9-Mediated Gene Knockout in a Non-Model Sea Urchin,
    Sakamoto N; Watanabe K; Awazu A; Yamamoto T
    Zoolog Sci; 2024 Apr; 41(2):159-166. PubMed ID: 38587910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TrBase: A genome and transcriptome database of Temnopleurus reevesii.
    Kinjo S; Kiyomoto M; Suzuki H; Yamamoto T; Ikeo K; Yaguchi S
    Dev Growth Differ; 2022 May; 64(4):210-218. PubMed ID: 35451498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition.
    Wessel GM; Kiyomoto M; Shen TL; Yajima M
    Sci Rep; 2020 Feb; 10(1):1973. PubMed ID: 32029769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 knockin methodology for the sea urchin embryo.
    Oulhen N; Morita S; Warner JF; Wessel G
    Mol Reprod Dev; 2023 Feb; 90(2):69-72. PubMed ID: 36719060
    [No Abstract]   [Full Text] [Related]  

  • 9. Expression pattern of polyketide synthase-2 during sea urchin development.
    Beeble A; Calestani C
    Gene Expr Patterns; 2012; 12(1-2):7-10. PubMed ID: 22001775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development.
    Cui M; Lin CY; Su YH
    Brief Funct Genomics; 2017 Sep; 16(5):309-318. PubMed ID: 28605407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Albinism as a visual, in vivo guide for CRISPR/Cas9 functionality in the sea urchin embryo.
    Oulhen N; Wessel GM
    Mol Reprod Dev; 2016 Dec; 83(12):1046-1047. PubMed ID: 27859831
    [No Abstract]   [Full Text] [Related]  

  • 12. Generation of a homozygous mutant drug transporter (ABCB1) knockout line in the sea urchin Lytechinus pictus.
    Vyas H; Schrankel CS; Espinoza JA; Mitchell KL; Nesbit KT; Jackson E; Chang N; Lee Y; Warner J; Reitzel A; Lyons DC; Hamdoun A
    Development; 2022 Jun; 149(11):. PubMed ID: 35666622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pigmentation biosynthesis influences the microbiome in sea urchins.
    Wessel GM; Kiyomoto M; Reitzel AM; Carrier TJ
    Proc Biol Sci; 2022 Aug; 289(1981):20221088. PubMed ID: 35975446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CRISPR/Cas9-mediated gene knockout system in
    Kadooka C; Yamaguchi M; Okutsu K; Yoshizaki Y; Takamine K; Katayama T; Maruyama JI; Tamaki H; Futagami T
    Biosci Biotechnol Biochem; 2020 Oct; 84(10):2179-2183. PubMed ID: 32657224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete Knockout of Endogenous Mdr1 (Abcb1) in MDCK Cells by CRISPR-Cas9.
    Simoff I; Karlgren M; Backlund M; Lindström AC; Gaugaz FZ; Matsson P; Artursson P
    J Pharm Sci; 2016 Feb; 105(2):1017-1021. PubMed ID: 26869442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early development and neurogenesis of Temnopleurus reevesii.
    Yaguchi S; Yamazaki A; Wada W; Tsuchiya Y; Sato T; Shinagawa H; Yamada Y; Yaguchi J
    Dev Growth Differ; 2015 Apr; 57(3):242-50. PubMed ID: 25754419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of a Nrf2 homozygous knockout human embryonic stem cell line using CRISPR/Cas9.
    Kim SJ; Habib O; Kim JS; Han HW; Koo SK; Kim JH
    Stem Cell Res; 2017 Mar; 19():46-48. PubMed ID: 28413005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temnopleurus as an emerging echinoderm model.
    Yaguchi S
    Methods Cell Biol; 2019; 150():71-79. PubMed ID: 30777191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A homozygous Keap1-knockout human embryonic stem cell line generated using CRISPR/Cas9 mediates gene targeting.
    Kim SJ; Habib O; Kim JS; Han HW; Koo SK; Kim JH
    Stem Cell Res; 2017 Mar; 19():52-54. PubMed ID: 28413007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants.
    Burle-Caldas GA; Soares-Simões M; Lemos-Pechnicki L; DaRocha WD; Teixeira SMR
    Int J Parasitol; 2018 Jul; 48(8):591-596. PubMed ID: 29577891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.