BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 32428687)

  • 1. Electrostatic driven transport enhances penetration of positively charged peptide surfaces through tumor extracellular matrix.
    Mohanty RP; Liu X; Ghosh D
    Acta Biomater; 2020 Sep; 113():240-251. PubMed ID: 32428687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins.
    Vedadghavami A; Zhang C; Bajpayee AG
    Nano Today; 2020 Oct; 34():. PubMed ID: 32802145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-Switchable nanoparticles to enhance tumor penetration and accumulation.
    Souri M; Golzaryan A; Soltani M
    Eur J Pharm Biopharm; 2024 Jun; 199():114310. PubMed ID: 38705311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities.
    Au JL; Yeung BZ; Wientjes MG; Lu Z; Wientjes MG
    Adv Drug Deliv Rev; 2016 Feb; 97():280-301. PubMed ID: 26686425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EFFECTS OF POLYMERIC NANOPARTICLE SURFACE PROPERTIES ON INTERACTION WITH BRAIN TUMOR ENVIRONMENT.
    Mattix B; Moore T; Uvarov O; Pollard S; O'Donnell L; Park K; Horne D; Dhulekar J; Reese L; Nguyen D; Kraveka J; Burg K; Alexis F
    Nano Life; 2013 Dec; 3(4):1343003. PubMed ID: 25110523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Branched poly-l-lysine for cartilage penetrating carriers.
    Gonzales G; Hoque J; Gilpin A; Maity B; Zauscher S; Varghese S
    Bioeng Transl Med; 2024 May; 9(3):e10612. PubMed ID: 38818117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles.
    Islam MA; Barua S; Barua D
    BMC Syst Biol; 2017 Nov; 11(1):113. PubMed ID: 29178887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single particle tracking reveals biphasic transport during nanorod magnetophoresis through extracellular matrix.
    Mair LO; Superfine R
    Soft Matter; 2014 Jun; 10(23):4118-25. PubMed ID: 24744160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Stranded Nucleic Acid Transmembrane Molecular Carriers Based on Positively Charged Helical Foldamers.
    Ge Y; Li W; Tian J; Yu H; Wang Z; Wang M; Dong Z
    Adv Sci (Weinh); 2024 May; ():e2400678. PubMed ID: 38757406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular Nanobionic Liposome with High Zeta Potential Enhances Intravesical Adhesion and Drug Delivery.
    Du H; Yin H; Qin Y; Min Y; Deng Q; Tan J; Li G; Li N; Zhu C; Xu Y
    ACS Nano; 2024 Jan; 18(4):3583-3596. PubMed ID: 38252681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Diffusivity Quantification Unveils Ubiquitous Net Charge-Driven Protein-Protein Interaction.
    Choi AA; Xu K
    J Am Chem Soc; 2024 Apr; 146(15):10973-10978. PubMed ID: 38576203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A charge-dependent long-ranged force drives tailored assembly of matter in solution.
    Wang S; Walker-Gibbons R; Watkins B; Flynn M; Krishnan M
    Nat Nanotechnol; 2024 Apr; 19(4):485-493. PubMed ID: 38429493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging the extracellular matrix in live tissues and organisms with a glycan-binding fluorophore.
    Fiore A; Yu G; Northey JJ; Patel R; Ravenscroft TA; Ikegami R; Kolkman W; Kumar P; Grimm JB; Dilan TL; Ruetten VMS; Ahrens MB; Shroff H; Lavis LD; Wang S; Weaver VM; Pedram K
    bioRxiv; 2024 May; ():. PubMed ID: 38766047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to Optimize Binding of Coated Nanoparticles: Coupling of Physical Interactions, Molecular Organization and Chemical State.
    Nap RJ; Szleifer I
    Biomater Sci; 2013 Aug; 1(8):814-823. PubMed ID: 23930222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors.
    van de Ven AL; Wu M; Lowengrub J; McDougall SR; Chaplain MA; Cristini V; Ferrari M; Frieboes HB
    AIP Adv; 2012 Mar; 2(1):11208. PubMed ID: 22489278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleic acid-based drugs for patients with solid tumours.
    Huayamares SG; Loughrey D; Kim H; Dahlman JE; Sorscher EJ
    Nat Rev Clin Oncol; 2024 Jun; 21(6):407-427. PubMed ID: 38589512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Electrostatic Charge Shielding Induced by Cationic Drug Carriers in Articular Cartilage Using Donnan Osmotic Theory.
    Warren MR; Bajpayee AG
    Bioelectricity; 2022 Dec; 4(4):248-258. PubMed ID: 36644714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of WRAP5 Peptide Complexes for Targeted Drug/Gene Co-Delivery toward Glioblastoma Therapy.
    Neves AR; Albuquerque T; Faria R; Gonçalves AM; Santos C; Vivès E; Boisguérin P; Passarinha LA; Sousa Â; Costa D
    Pharmaceutics; 2022 Oct; 14(10):. PubMed ID: 36297647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles with rough surface improve the therapeutic effect of photothermal immunotherapy against melanoma.
    Xue J; Zhu Y; Bai S; He C; Du G; Zhang Y; Zhong Y; Chen W; Wang H; Sun X
    Acta Pharm Sin B; 2022 Jun; 12(6):2934-2949. PubMed ID: 35755278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiotherapy-induced enrichment of EGF-modified doxorubicin nanoparticles enhances the therapeutic outcome of lung cancer.
    Wang J; Zhang Y; Zhang G; Xiang L; Pang H; Xiong K; Lu Y; Li J; Dai J; Lin S; Fu S
    Drug Deliv; 2022 Dec; 29(1):588-599. PubMed ID: 35156493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.