These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32428887)

  • 61. Facile and Ultraclean Graphene-on-Glass Nanopores by Controlled Electrochemical Etching.
    Zhang X; van Deursen PMG; Fu W; Schneider GF
    ACS Sens; 2020 Aug; 5(8):2317-2325. PubMed ID: 32573208
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hydrophilic and size-controlled graphene nanopores for protein detection.
    Goyal G; Lee YB; Darvish A; Ahn CW; Kim MJ
    Nanotechnology; 2016 Dec; 27(49):495301. PubMed ID: 27827346
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Temperature dependence of DNA translocations through solid-state nanopores.
    Verschueren DV; Jonsson MP; Dekker C
    Nanotechnology; 2015 Jun; 26(23):234004. PubMed ID: 25994084
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Individually Addressable Multi-nanopores for Single-Molecule Targeted Operations.
    Cadinu P; Kang M; Nadappuram BP; Ivanov AP; Edel JB
    Nano Lett; 2020 Mar; 20(3):2012-2019. PubMed ID: 32053383
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process.
    Yanagi I; Ishida T; Fujisaki K; Takeda K
    Sci Rep; 2015 Oct; 5():14656. PubMed ID: 26424588
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fabrication of sub-20 nm nanopore arrays in membranes with embedded metal electrodes at wafer scales.
    Bai J; Wang D; Nam SW; Peng H; Bruce R; Gignac L; Brink M; Kratschmer E; Rossnagel S; Waggoner P; Reuter K; Wang C; Astier Y; Balagurusamy V; Luan B; Kwark Y; Joseph E; Guillorn M; Polonsky S; Royyuru A; Papa Rao S; Stolovitzky G
    Nanoscale; 2014 Aug; 6(15):8900-6. PubMed ID: 24964839
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography.
    Janssen XJ; Jonsson MP; Plesa C; Soni GV; Dekker C; Dekker NH
    Nanotechnology; 2012 Nov; 23(47):475302. PubMed ID: 23103750
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Electrical Sensing of Phosphonates by Functional Coupling of Phosphonate Binding Protein PhnD to Solid-State Nanopores.
    Bernhard M; Diefenbach M; Biesalski M; Laube B
    ACS Sens; 2020 Jan; 5(1):234-241. PubMed ID: 31829017
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores.
    Yamazaki H; Hu R; Zhao Q; Wanunu M
    ACS Nano; 2018 Dec; 12(12):12472-12481. PubMed ID: 30457833
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction.
    Goto Y; Yanagi I; Matsui K; Yokoi T; Takeda K
    Sci Rep; 2016 Aug; 6():31324. PubMed ID: 27499264
    [TBL] [Abstract][Full Text] [Related]  

  • 71. K(+) , Na(+) , and Mg(2+) on DNA translocation in silicon nitride nanopores.
    Uplinger J; Thomas B; Rollings R; Fologea D; McNabb D; Li J
    Electrophoresis; 2012 Dec; 33(23):3448-57. PubMed ID: 23147752
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Detection and Separation of Single-Stranded DNA Fragments Using Solid-State Nanopores.
    Zhan L; Zhang Y; Si W; Sha J; Chen Y
    J Phys Chem Lett; 2021 Jul; 12(28):6469-6477. PubMed ID: 34240883
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes.
    Sischka A; Galla L; Meyer AJ; Spiering A; Knust S; Mayer M; Hall AR; Beyer A; Reimann P; Gölzhäuser A; Anselmetti D
    Analyst; 2015 Jul; 140(14):4843-7. PubMed ID: 25768647
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A review on nanopores based protein sensing in complex analyte.
    Das N; Chakraborty B; RoyChaudhuri C
    Talanta; 2022 Jun; 243():123368. PubMed ID: 35287016
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fabrication and characterization of nanopores with insulated transverse nanoelectrodes for DNA sensing in salt solution.
    Healy K; Ray V; Willis LJ; Peterman N; Bartel J; Drndić M
    Electrophoresis; 2012 Dec; 33(23):3488-96. PubMed ID: 23161707
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nanopore-Assisted, Sequence-Specific Detection, and Single-Molecule Hybridization Analysis of Short, Single-Stranded DNAs.
    Mereuta L; Asandei A; Schiopu I; Park Y; Luchian T
    Anal Chem; 2019 Jul; 91(13):8630-8637. PubMed ID: 31194518
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors.
    Cressiot B; Greive SJ; Mojtabavi M; Antson AA; Wanunu M
    Nat Commun; 2018 Nov; 9(1):4652. PubMed ID: 30405123
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Revealing the mechanism of DNA passing through graphene and boron nitride nanopores.
    Tyagi A; Chu K; Hossain MD; Abidi IH; Lin W; Yan Y; Zhang K; Luo Z
    Nanoscale; 2019 Dec; 11(48):23438-23448. PubMed ID: 31799536
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Light-Driven Conversion of Silicon Nitride Nanopore to Nanonet for Single-Protein Trapping Analysis.
    Li J; Huang B; Wang Y; Li A; Wang Y; Pan Y; Chai J; Liu Z; Zhai Y
    Adv Mater; 2023 Apr; 35(16):e2210342. PubMed ID: 36823450
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A CMOS enhanced solid-state nanopore based single molecule detection platform.
    Chen C; Yemenicioglu S; Uddin A; Corgliano E; Theogarajan L
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():164-7. PubMed ID: 24109650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.