These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3. Ido Y J Diabetes Investig; 2016 Jul; 7(4):448-58. PubMed ID: 27181414 [TBL] [Abstract][Full Text] [Related]
3. Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target. Griffiths HBS; Williams C; King SJ; Allison SJ Biochem Soc Trans; 2020 Jun; 48(3):733-744. PubMed ID: 32573651 [TBL] [Abstract][Full Text] [Related]
4. Role of pseudohypoxia in the pathogenesis of type 2 diabetes. Song J; Yang X; Yan LJ Hypoxia (Auckl); 2019; 7():33-40. PubMed ID: 31240235 [TBL] [Abstract][Full Text] [Related]
5. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. Frederick DW; Davis JG; Dávila A; Agarwal B; Michan S; Puchowicz MA; Nakamaru-Ogiso E; Baur JA J Biol Chem; 2015 Jan; 290(3):1546-58. PubMed ID: 25411251 [TBL] [Abstract][Full Text] [Related]
6. Hyperbaric Oxygen Reduces Infarction Volume and Hemorrhagic Transformation Through ATP/NAD Hu Q; Manaenko A; Bian H; Guo Z; Huang JL; Guo ZN; Yang P; Tang J; Zhang JH Stroke; 2017 Jun; 48(6):1655-1664. PubMed ID: 28495827 [TBL] [Abstract][Full Text] [Related]
8. Nicotinamide phosphoribosyl transferase (Nampt) is required for de novo lipogenesis in tumor cells. Bowlby SC; Thomas MJ; D'Agostino RB; Kridel SJ PLoS One; 2012; 7(6):e40195. PubMed ID: 22768255 [TBL] [Abstract][Full Text] [Related]
9. Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy. Diguet N; Trammell SAJ; Tannous C; Deloux R; Piquereau J; Mougenot N; Gouge A; Gressette M; Manoury B; Blanc J; Breton M; Decaux JF; Lavery GG; Baczkó I; Zoll J; Garnier A; Li Z; Brenner C; Mericskay M Circulation; 2018 May; 137(21):2256-2273. PubMed ID: 29217642 [TBL] [Abstract][Full Text] [Related]
10. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors. Lu W; Wang L; Chen L; Hui S; Rabinowitz JD Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978 [TBL] [Abstract][Full Text] [Related]
11. Hepatic steatosis induced in C57BL/6 mice by a non-ß oxidizable fatty acid analogue is associated with reduced plasma kynurenine metabolites and a modified hepatic NAD Berge RK; Cacabelos D; Señarís R; Nordrehaug JE; Nygård O; Skorve J; Bjørndal B Lipids Health Dis; 2020 May; 19(1):94. PubMed ID: 32410680 [TBL] [Abstract][Full Text] [Related]
12. NAMPT reduction-induced NAD Wang H; Zhu S; Wu X; Liu Y; Ge J; Wang Q; Gu L Aging Cell; 2021 Nov; 20(11):e13496. PubMed ID: 34662475 [TBL] [Abstract][Full Text] [Related]
13. BRCA1 as a nicotinamide adenine dinucleotide (NAD)-dependent metabolic switch in ovarian cancer. Li D; Chen NN; Cao JM; Sun WP; Zhou YM; Li CY; Wang XX Cell Cycle; 2014; 13(16):2564-71. PubMed ID: 25486197 [TBL] [Abstract][Full Text] [Related]
14. Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance. Costford SR; Brouwers B; Hopf ME; Sparks LM; Dispagna M; Gomes AP; Cornnell HH; Petucci C; Phelan P; Xie H; Yi F; Walter GA; Osborne TF; Sinclair DA; Mynatt RL; Ayala JE; Gardell SJ; Smith SR Mol Metab; 2018 Jan; 7():1-11. PubMed ID: 29146412 [TBL] [Abstract][Full Text] [Related]
15. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells. Sociali G; Grozio A; Caffa I; Schuster S; Becherini P; Damonte P; Sturla L; Fresia C; Passalacqua M; Mazzola F; Raffaelli N; Garten A; Kiess W; Cea M; Nencioni A; Bruzzone S FASEB J; 2019 Mar; 33(3):3704-3717. PubMed ID: 30514106 [TBL] [Abstract][Full Text] [Related]
16. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders. Henning RJ; Bourgeois M; Harbison RD Cardiovasc Toxicol; 2018 Dec; 18(6):493-506. PubMed ID: 29968072 [TBL] [Abstract][Full Text] [Related]
17. Discovery of Dual Function Agents That Exhibit Anticancer Activity via Catastrophic Nicotinamide Adenine Dinucleotide Depletion. Fu Y; Huang Y; Zhou C; Li X; Dong G; Huang M; Ding J; Sheng C J Med Chem; 2023 Dec; 66(24):16694-16703. PubMed ID: 38060985 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous Analysis of Major Coenzymes of Cellular Redox Reactions and Energy Using ex Vivo (1)H NMR Spectroscopy. Nagana Gowda GA; Abell L; Lee CF; Tian R; Raftery D Anal Chem; 2016 May; 88(9):4817-24. PubMed ID: 27043450 [TBL] [Abstract][Full Text] [Related]
19. Identification of the Nicotinamide Salvage Pathway as a New Toxification Route for Antimetabolites. Buonvicino D; Mazzola F; Zamporlini F; Resta F; Ranieri G; Camaioni E; Muzzi M; Zecchi R; Pieraccini G; Dölle C; Calamante M; Bartolucci G; Ziegler M; Stecca B; Raffaelli N; Chiarugi A Cell Chem Biol; 2018 Apr; 25(4):471-482.e7. PubMed ID: 29478906 [TBL] [Abstract][Full Text] [Related]
20. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Braidy N; Berg J; Clement J; Khorshidi F; Poljak A; Jayasena T; Grant R; Sachdev P Antioxid Redox Signal; 2019 Jan; 30(2):251-294. PubMed ID: 29634344 [No Abstract] [Full Text] [Related] [Next] [New Search]