These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32429072)

  • 21. A Multi-Frequencies Micro-Electromagnetic Vibration Energy Harvester with Nonlinearity for Expanding the Frequency Band.
    Lei Y; Chen X; Wen Z
    J Nanosci Nanotechnol; 2018 Dec; 18(12):8376-8380. PubMed ID: 30189962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation.
    Lee YJ; Qi Y; Zhou G; Lua KB
    Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.
    Zhang Y; Wang T; Zhang A; Peng Z; Luo D; Chen R; Wang F
    Rev Sci Instrum; 2016 Dec; 87(12):125001. PubMed ID: 28040962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and multi-pole magnets towards enhanced power density.
    Leung CM; Wang Y; Chen W
    Rev Sci Instrum; 2016 Nov; 87(11):114705. PubMed ID: 27910368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications.
    Pertin O; Guha K; Jakšić O; Jakšić Z; Iannacci J
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrostatic MEMS Vibration Energy Harvesters inside of Tire Treads.
    Naito Y; Uenishi K
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30795502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lead-Free LiNbO
    Barrientos G; Clementi G; Trigona C; Ouhabaz M; Gauthier-Manuel L; Belharet D; Margueron S; Bartasyte A; Malandrino G; Baglio S
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibration Energy Harvester Based on Torsionally Oscillating Magnet.
    Wang X; Li J; Zhou C; Tao K; Qiao D; Li Y
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Magnetic-Coupled Nonlinear Electromagnetic Generator with Both Wideband and High-Power Performance.
    Huang M; Li Y; Feng X; Tang T; Liu H; Chen T; Sun L
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repulsively driven frequency-increased-generators for durable energy harvesting from ultra-low frequency vibration.
    Tang Q; Yang Y; Li X
    Rev Sci Instrum; 2014 Apr; 85(4):045004. PubMed ID: 24784650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a two-degree-of-freedom magnetic levitation vibration energy harvester for bridge vibration response analysis.
    Xie D; Zheng Z; Zhu Y
    Heliyon; 2024 Mar; 10(5):e26000. PubMed ID: 38434262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimodal MEMS vibration energy harvester with cascaded flexible and silicon beams for ultralow frequency response.
    Feng H; Bu L; Li Z; Xu S; Hu B; Xu M; Jiang S; Wang X
    Microsyst Nanoeng; 2023; 9():33. PubMed ID: 36969966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Arc-shaped Piezoelectric Bistable Vibration Energy Harvester: Modeling and Experiments.
    Zhang X; Yang W; Zuo M; Tan H; Fan H; Mao Q; Wan X
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling and Investigation of Energy Harvesting System Utilizing Magnetically Levitated Permanent Magnet.
    Bijak J; Trawiński T; Szczygieł M; Kowalik Z
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crack Protective Layered Architecture of Lead-Free Piezoelectric Energy Harvester in Bistable Configuration.
    Rubes O; Machu Z; Sevecek O; Hadas Z
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fully Integrated High-Performance MEMS Energy Harvester for Mechanical and Contactless Magnetic Excitation in Resonance and at Low Frequencies.
    Bodduluri MT; Dankwort T; Lisec T; Grünzig S; Khare A; Ahmed M; Gojdka B
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design Optimization and Comparison of Cylindrical Electromagnetic Vibration Energy Harvesters.
    Phan TN; Aranda JJ; Oelmann B; Bader S
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-Low Frequency Eccentric Pendulum-Based Electromagnetic Vibrational Energy Harvester.
    Li M; Deng H; Zhang Y; Li K; Huang S; Liu X
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33207547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.