These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32429148)

  • 1. Fullerene Nanoarchitectonics with Shape-Shifting.
    Ariga K; Shrestha LK
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoarchitectonics for Hierarchical Fullerene Nanomaterials.
    Maji S; Shrestha LK; Ariga K
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zero-to-Two Nanoarchitectonics: Fabrication of Two-Dimensional Materials from Zero-Dimensional Fullerene.
    Chen G; Shrestha LK; Ariga K
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoarchitectonics for Analytical Science at Interfaces and with Supramolecular Nanostructures.
    Ariga K
    Anal Sci; 2021 Oct; 37(10):1331-1348. PubMed ID: 33967184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fullerene nanoarchitectonics: from zero to higher dimensions.
    Shrestha LK; Ji Q; Mori T; Miyazawa K; Yamauchi Y; Hill JP; Ariga K
    Chem Asian J; 2013 Aug; 8(8):1662-79. PubMed ID: 23589223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoarchitectonics from Molecular Units to Living-Creature-Like Motifs.
    Ariga K; Mori T; Shrestha LK
    Chem Rec; 2018 Jul; 18(7-8):676-695. PubMed ID: 29205796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly as a key player for materials nanoarchitectonics.
    Ariga K; Nishikawa M; Mori T; Takeya J; Shrestha LK; Hill JP
    Sci Technol Adv Mater; 2019; 20(1):51-95. PubMed ID: 30787960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fullerene Rosette: Two-Dimensional Interactive Nanoarchitectonics and Selective Vapor Sensing.
    Chen G; Bhadra BN; Sutrisno L; Shrestha LK; Ariga K
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-interactive nanoarchitectonics with two-dimensional materials and environments.
    Shen X; Song J; Sevencan C; Leong DT; Ariga K
    Sci Technol Adv Mater; 2022; 23(1):199-224. PubMed ID: 35370475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Materials Nanoarchitectonics at Dynamic Interfaces: Structure Formation and Functional Manipulation.
    Ariga K
    Materials (Basel); 2024 Jan; 17(1):. PubMed ID: 38204123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-Liquid Interfacial Nanoarchitectonics.
    Ariga K
    Small; 2024 Sep; 20(39):e2305636. PubMed ID: 37641176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecule-to-Material-to-Bio Nanoarchitectonics with Biomedical Fullerene Nanoparticles.
    Shen X; Song J; Kawakami K; Ariga K
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials nanoarchitectonics at two-dimensional liquid interfaces.
    Ariga K; Matsumoto M; Mori T; Shrestha LK
    Beilstein J Nanotechnol; 2019; 10():1559-1587. PubMed ID: 31467820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoarchitectonics for carbon-material-based sensors.
    Ariga K; Minami K; Shrestha LK
    Analyst; 2016 Apr; 141(9):2629-38. PubMed ID: 26876528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetically controlled fabrication of C60 1-dimensional crystals.
    Cha SI; Miyazawa K; Kim YK; Lee DY; Kim JD
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3374-80. PubMed ID: 21776712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization.
    Ariga K; Jia X; Song J; Hill JP; Leong DT; Jia Y; Li J
    Angew Chem Int Ed Engl; 2020 Sep; 59(36):15424-15446. PubMed ID: 32170796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic and Biological Nanoarchitectonics.
    Ariga K
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Dynamics Simulation Study of the HIV-1 Protease Inhibit ion Using Fullerene and New Fullerene Derivatives of Carbon Nanostructures.
    Barzegar A; Naghizadeh E; Zakariazadeh M; Azamat J
    Mini Rev Med Chem; 2017; 17(7):633-647. PubMed ID: 27292780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in supramolecular fullerene chemistry.
    Chang X; Xu Y; von Delius M
    Chem Soc Rev; 2024 Jan; 53(1):47-83. PubMed ID: 37853792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Self-Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene-Encapsulated Barrel.
    Purba PC; Maity M; Bhattacharyya S; Mukherjee PS
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):14109-14116. PubMed ID: 33834590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.