These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32429156)

  • 1. A Novel Fault Diagnosis Scheme for Rolling Bearing Based on Convex Optimization in Synchroextracting Chirplet Transform.
    You G; Lv Y; Jiang Y; Yi C
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive synchroextracting transform and its application in bearing fault diagnosis.
    Yan Z; Xu Y; Zhang K; Hu A; Yu G
    ISA Trans; 2023 Jun; 137():574-589. PubMed ID: 36639269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparse and low-rank decomposition of the time-frequency representation for bearing fault diagnosis under variable speed conditions.
    Wang R; Fang H; Yu L; Yu L; Chen J
    ISA Trans; 2022 Sep; 128(Pt B):579-598. PubMed ID: 34952690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time-frequency ridge enhancement.
    Li C; Sanchez V; Zurita G; Cerrada Lozada M; Cabrera D
    ISA Trans; 2016 Jan; 60():274-284. PubMed ID: 26542359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractional lower order linear chirplet transform and its application to bearing fault analysis.
    Long J; Wang H; Fan H; Lao Z
    PLoS One; 2022; 17(10):e0276489. PubMed ID: 36269776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid SVD-Based Denoising and Self-Adaptive TMSST for High-Speed Train Axle Bearing Fault Detection.
    Deng F; Liu C; Liu Y; Hao R
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kernel regression residual decomposition-based synchroextracting transform to detect faults in mechanical systems.
    Liu H; Xiang J
    ISA Trans; 2019 Apr; 87():251-263. PubMed ID: 30538039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rolling Bearing Fault Diagnosis Based on an Improved HTT Transform.
    Pang B; Tang G; Tian T; Zhou C
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29662013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodical sparse low-rank matrix estimation algorithm for fault detection of rolling bearings.
    Wang B; Liao Y; Ding C; Zhang X
    ISA Trans; 2020 Jun; 101():366-378. PubMed ID: 32035636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trivariate Empirical Mode Decomposition via Convex Optimization for Rolling Bearing Condition Identification.
    Lv Y; Zhang H; Yi C
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30021945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instantaneous frequency estimation for wheelset bearings weak fault signals using second-order synchrosqueezing S-transform with optimally weighted sliding window.
    Lin R; Liu Z; Jin Y
    ISA Trans; 2021 Sep; 115():218-233. PubMed ID: 33454056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust post-processing time frequency technology and its application to mechanical fault diagnosis.
    Long J; Deng C; Wang H
    Sci Rep; 2024 Sep; 14(1):20456. PubMed ID: 39227620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Dynamic Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing.
    Dang Z; Lv Y; Li Y; Wei G
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29921832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive tacholess order tracking method based on generalized linear chirplet transform and its application for bearing fault diagnosis.
    Duan R; Liao Y; Yang L
    ISA Trans; 2022 Aug; 127():324-341. PubMed ID: 34507814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A weak fault feature extraction of rolling element bearing based on attenuated cosine dictionaries and sparse feature sign search.
    Zhou H; Li H; Liu T; Chen Q
    ISA Trans; 2020 Feb; 97():143-154. PubMed ID: 31431288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A noise-robust sparse approach to the time-frequency representation of visual evoked potentials.
    Sheela P; Puthankattil SD
    Comput Biol Med; 2021 Aug; 135():104561. PubMed ID: 34153788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint High-Order Synchrosqueezing Transform and Multi-Taper Empirical Wavelet Transform for Fault Diagnosis of Wind Turbine Planetary Gearbox under Nonstationary Conditions.
    Hu Y; Tu X; Li F; Meng G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29316668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local maximum synchrosqueezes form scaling-basis chirplet transform.
    Hou Y; Wang L; Luo X; Han X
    PLoS One; 2022; 17(11):e0278223. PubMed ID: 36445900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Method for Vibration Sensor-Based Instantaneous Defect Frequency Estimation for Rolling Bearings Under Non-Stationary Conditions.
    Zhao D; Gelman L; Chu F; Ball A
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32933089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-resolution time-frequency analysis technique based on bi-directional squeezing and its application in fault diagnosis of rotating machinery.
    Ma Y; Yu G; Lin T; Sun M
    ISA Trans; 2024 Apr; 147():382-402. PubMed ID: 38365527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.