These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
552 related articles for article (PubMed ID: 32429191)
1. Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing. Wang Q; Ji C; Sun L; Sun J; Liu J Molecules; 2020 May; 25(10):. PubMed ID: 32429191 [TBL] [Abstract][Full Text] [Related]
2. Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils. Wang Q; Ji C; Sun J; Zhu Q; Liu J Molecules; 2020 Jul; 25(14):. PubMed ID: 32708238 [TBL] [Abstract][Full Text] [Related]
3. Effects of Rice Straw Powder (RSP) Size and Pretreatment on Properties of FDM 3D-Printed RSP/Poly(Lactic Acid) Biocomposites. Yu W; Dong L; Lei W; Zhou Y; Pu Y; Zhang X Molecules; 2021 May; 26(11):. PubMed ID: 34072204 [TBL] [Abstract][Full Text] [Related]
5. Influence of Lactic Acid Surface Modification of Cellulose Nanofibrils on the Properties of Cellulose Nanofibril Films and Cellulose Nanofibril-Poly(lactic acid) Composites. Lafia-Araga RA; Sabo R; Nabinejad O; Matuana L; Stark N Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572560 [TBL] [Abstract][Full Text] [Related]
6. Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Kiziltas A; Nazari B; Erbas Kiziltas E; Gardner DJ; Han Y; Rushing TS Carbohydr Polym; 2016 Apr; 140():393-9. PubMed ID: 26876866 [TBL] [Abstract][Full Text] [Related]
7. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Huan S; Ajdary R; Bai L; Klar V; Rojas OJ Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194 [TBL] [Abstract][Full Text] [Related]
8. Reinforcement of Polylactic Acid for Fused Deposition Modeling Process with Nano Particles Treated Bamboo Powder. Wang C; Smith LM; Zhang W; Li M; Wang G; Shi SQ; Cheng H; Zhang S Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31277428 [TBL] [Abstract][Full Text] [Related]
9. Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds. Elhattab K; Bhaduri SB; Lawrence JG; Sikder P ACS Appl Bio Mater; 2021 Apr; 4(4):3276-3286. PubMed ID: 35014414 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable cellulose I (II) nanofibrils/poly(vinyl alcohol) composite films with high mechanical properties, improved thermal stability and excellent transparency. Xing L; Hu C; Zhang W; Guan L; Gu J Int J Biol Macromol; 2020 Dec; 164():1766-1775. PubMed ID: 32763405 [TBL] [Abstract][Full Text] [Related]
11. A Low-Cost Method to Prepare Biocompatible Filaments with Enhanced Physico-Mechanical Properties for FDM 3D Printing. Tan DK; Münzenrieder N; Maniruzzaman M; Nokhodchi A Curr Drug Deliv; 2021; 18(6):700-711. PubMed ID: 33155909 [TBL] [Abstract][Full Text] [Related]
12. Effects of Printing Parameters on Properties of FDM 3D Printed Residue of Astragalus/Polylactic Acid Biomass Composites. Yu W; Shi J; Sun L; Lei W Molecules; 2022 Oct; 27(21):. PubMed ID: 36364199 [TBL] [Abstract][Full Text] [Related]
13. FDM 3D Printing and Properties of PBS/PLA Blends. Yu W; Sun L; Li M; Li M; Lei W; Wei C Polymers (Basel); 2023 Nov; 15(21):. PubMed ID: 37959985 [TBL] [Abstract][Full Text] [Related]
14. In-situ polycondensate-coated cellulose nanofiber heterostructure for polylactic acid-based composites with superior mechanical and thermal properties. Wang Q; Chen X; Zeng S; Chen P; Xu Y; Nie W; Xia R; Zhou Y Int J Biol Macromol; 2023 Jun; 240():124515. PubMed ID: 37085066 [TBL] [Abstract][Full Text] [Related]
15. Polylactide (PLA) Filaments a Biobased Solution for Additive Manufacturing: Correlating Rheology and Thermomechanical Properties with Printing Quality. Cicala G; Giordano D; Tosto C; Filippone G; Recca A; Blanco I Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29997365 [TBL] [Abstract][Full Text] [Related]
16. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels. Sun X; Tyagi P; Agate S; McCord MG; Lucia LA; Pal L Carbohydr Polym; 2020 Apr; 234():115898. PubMed ID: 32070518 [TBL] [Abstract][Full Text] [Related]
17. Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. Wang T; Drzal LT ACS Appl Mater Interfaces; 2012 Oct; 4(10):5079-85. PubMed ID: 22991937 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the parameters used in fused deposition modeling of poly(lactic acid) to optimize 3D printing sessions. Carlier E; Marquette S; Peerboom C; Denis L; Benali S; Raquez JM; Amighi K; Goole J Int J Pharm; 2019 Jun; 565():367-377. PubMed ID: 31071420 [TBL] [Abstract][Full Text] [Related]
19. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. Abouzeid RE; Khiari R; Salama A; Diab M; Beneventi D; Dufresne A Int J Biol Macromol; 2020 Oct; 160():538-547. PubMed ID: 32470581 [TBL] [Abstract][Full Text] [Related]
20. Melt-processing of cellulose nanofibril/polylactide bionanocomposites via a sustainable polyethylene glycol-based carrier system. Cailloux J; Raquez JM; Lo Re G; Santana O; Bonnaud L; Dubois P; Maspoch ML Carbohydr Polym; 2019 Nov; 224():115188. PubMed ID: 31472860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]