BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 32429527)

  • 1. Resilience of Small Ruminants to Climate Change and Increased Environmental Temperature: A Review.
    Joy A; Dunshea FR; Leury BJ; Clarke IJ; DiGiacomo K; Chauhan SS
    Animals (Basel); 2020 May; 10(5):. PubMed ID: 32429527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological and physiological features in small ruminants: an adaptation strategy for survival under changing climatic conditions.
    Danmaigoro A; Muhammad MA; Abubakar K; Magiri RB; Bakare AG; Iji PA
    Int J Biometeorol; 2024 May; ():. PubMed ID: 38700715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction models, assessment methodologies and biotechnological tools to quantify heat stress response in ruminant livestock.
    Rashamol VP; Sejian V; Pragna P; Lees AM; Bagath M; Krishnan G; Gaughan JB
    Int J Biometeorol; 2019 Sep; 63(9):1265-1281. PubMed ID: 31129758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review: Adaptation of ruminant livestock production systems to climate changes.
    Henry BK; Eckard RJ; Beauchemin KA
    Animal; 2018 Dec; 12(s2):s445-s456. PubMed ID: 30092851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Selection for Thermotolerance in Ruminants.
    Osei-Amponsah R; Chauhan SS; Leury BJ; Cheng L; Cullen B; Clarke IJ; Dunshea FR
    Animals (Basel); 2019 Nov; 9(11):. PubMed ID: 31717903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation to hot climate and strategies to alleviate heat stress in livestock production.
    Renaudeau D; Collin A; Yahav S; de Basilio V; Gourdine JL; Collier RJ
    Animal; 2012 May; 6(5):707-28. PubMed ID: 22558920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation Mechanisms of Small Ruminants to Environmental Heat Stress.
    Berihulay H; Abied A; He X; Jiang L; Ma Y
    Animals (Basel); 2019 Feb; 9(3):. PubMed ID: 30823364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The detrimental impact of high environmental temperature on physiological response, growth, milk production, and reproductive efficiency of ruminants.
    Habeeb AA; Osman SF; Teama FEI; Gad AE
    Trop Anim Health Prod; 2023 Nov; 55(6):388. PubMed ID: 37910293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental stress and livestock productivity in hot-humid tropics: Alleviation and future perspectives.
    Oke OE; Uyanga VA; Iyasere OS; Oke FO; Majekodunmi BC; Logunleko MO; Abiona JA; Nwosu EU; Abioja MO; Daramola JO; Onagbesan OM
    J Therm Biol; 2021 Aug; 100():103077. PubMed ID: 34503814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review: Optimizing ruminant conversion of feed protein to human food protein.
    Broderick GA
    Animal; 2018 Aug; 12(8):1722-1734. PubMed ID: 29151400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small Ruminants: Farmers' Hope in a World Threatened by Water Scarcity.
    Akinmoladun OF; Muchenje V; Fon FN; Mpendulo CT
    Animals (Basel); 2019 Jul; 9(7):. PubMed ID: 31323882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invited review: Are adaptations present to support dairy cattle productivity in warm climates?
    Berman A
    J Dairy Sci; 2011 May; 94(5):2147-58. PubMed ID: 21524505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of omics in ruminant production: a review in the tropical and sub-tropical animal production context.
    Ribeiro DM; Salama AAK; Vitor ACM; Argüello A; Moncau CT; Santos EM; Caja G; de Oliveira JS; Balieiro JCC; Hernández-Castellano LE; Zachut M; Poleti MD; Castro N; Alves SP; Almeida AM
    J Proteomics; 2020 Sep; 227():103905. PubMed ID: 32712373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review: Alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects.
    Halmemies-Beauchet-Filleau A; Rinne M; Lamminen M; Mapato C; Ampapon T; Wanapat M; Vanhatalo A
    Animal; 2018 Dec; 12(s2):s295-s309. PubMed ID: 30318027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the climatic trends and heat stress periods for ruminants rearing in Bangladesh.
    Islam MS; Mondal AK; Auwul MR; Faruk Siddiki SHM; Islam MA
    Vet Anim Sci; 2024 Jun; 24():100359. PubMed ID: 38812585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat Stress and Goat Welfare: Adaptation and Production Considerations.
    Sejian V; Silpa MV; Reshma Nair MR; Devaraj C; Krishnan G; Bagath M; Chauhan SS; Suganthi RU; Fonseca VFC; König S; Gaughan JB; Dunshea FR; Bhatta R
    Animals (Basel); 2021 Apr; 11(4):. PubMed ID: 33916619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of heat stress on health and performance of dairy animals: A review.
    Das R; Sailo L; Verma N; Bharti P; Saikia J; Imtiwati ; Kumar R
    Vet World; 2016 Mar; 9(3):260-8. PubMed ID: 27057109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling heat stress under different environmental conditions.
    Carabaño MJ; Logar B; Bormann J; Minet J; Vanrobays ML; Díaz C; Tychon B; Gengler N; Hammami H
    J Dairy Sci; 2016 May; 99(5):3798-3814. PubMed ID: 26923054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weather influences feed intake and feed efficiency in a temperate climate.
    Hill DL; Wall E
    J Dairy Sci; 2017 Mar; 100(3):2240-2257. PubMed ID: 28109597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and hormonal acclimation to heat stress in domesticated ruminants.
    Bernabucci U; Lacetera N; Baumgard LH; Rhoads RP; Ronchi B; Nardone A
    Animal; 2010 Jul; 4(7):1167-83. PubMed ID: 22444615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.