These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32429576)

  • 1. Hydrogen Permeation in X65 Steel under Cyclic Loading.
    Cabrini M; Coppola L; Lorenzi S; Testa C; Carugo F; Bucella DP; Pastore T
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of
    Cabrini M; Sinigaglia E; Spinelli C; Tarenzi M; Testa C; Bolzoni FM
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31174341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel.
    Li S; Akiyama E; Yuuji K; Tsuzaki K; Uno N; Zhang B
    Sci Technol Adv Mater; 2010 Apr; 11(2):025005. PubMed ID: 27877333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after in situ Hydrogen Cathodic Charging for an X65 Pipeline Steel.
    Kyriakopoulou HP; Karmiris-Obratański P; Tazedakis AS; Daniolos NM; Dourdounis EC; Manolakos DE; Pantelis D
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32325971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between Microstructure and Hydrogen Degradation of 690 MPa Grade Marine Engineering Steel.
    Ma H; Tian H; Xin J; Cui Z
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33578961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Hydrogen Embrittlement Susceptibility of Different Types of Advanced High-Strength Steels.
    Cho S; Kim GI; Ko SJ; Yoo JS; Jung YS; Yoo YH; Kim JG
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen embrittlement in ferritic steels.
    Martin ML; Connolly MJ; DelRio FW; Slifka AJ
    Appl Phys Rev; 2020; 7(4):. PubMed ID: 34122684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Positive Role of Nanometric Molybdenum-Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steels.
    Peral LB; Fernández-Pariente I; Colombo C; Rodríguez C; Belzunce J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Hot Stamping and Tempering on Hydrogen Embrittlement of a Low-Carbon Boron-Alloyed Steel.
    Zhang Y; Hui W; Zhao X; Wang C; Dong H
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Assisted Cracking in Pearlitic Steel Rods: The Role of Residual Stresses Generated by Fatigue Precracking.
    Toribio J; Aguado L; Lorenzo M; Kharin V
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Evaluation on Analysis Methods of Trapping Site Density in Steels Based on Hydrogen Permeation Curve.
    Yang B; Li L; Cheng L
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32842575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of finish rolling temperature and yield ratio on variations in yield strength after pipe-forming of API-X65 line-pipe steels.
    Kim DW; Kim WK; Bae JH; Choi WD; Sohn SS; Lee S
    Sci Rep; 2020 Sep; 10(1):14742. PubMed ID: 32901069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Relative Humidity on Mechanical Degradation of Medium Mn Steels.
    Liu Q; Xu J; Shen L; Zhou Q; Su Y; Qiao L; Yan Y
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Nanosized NbC Precipitates on Hydrogen Diffusion in X80 Pipeline Steel.
    Cui Q; Wu J; Xie D; Wu X; Huang Y; Li X
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel.
    Lee J; Lee T; Mun DJ; Bae CM; Lee CS
    Sci Rep; 2019 Mar; 9(1):5219. PubMed ID: 30914723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners.
    Brahimi SV; Yue S; Sriraman KR
    Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels.
    Zhang B; Zhu Q; Xu C; Li C; Ma Y; Ma Z; Liu S; Shao R; Xu Y; Jiang B; Gao L; Pang X; He Y; Chen G; Qiao L
    Nat Commun; 2022 Jul; 13(1):3858. PubMed ID: 35790737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments.
    Trautmann A; Mori G; Oberndorfer M; Bauer S; Holzer C; Dittmann C
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel.
    Chen YS; Haley D; Gerstl SS; London AJ; Sweeney F; Wepf RA; Rainforth WM; Bagot PA; Moody MP
    Science; 2017 Mar; 355(6330):1196-1199. PubMed ID: 28302855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Thermal Treatment on SCC and HE Susceptibility of Supermartensitic Stainless Steel 16Cr5NiMo.
    Bacchi L; Biagini F; Corsinovi S; Romanelli M; Villa M; Valentini R
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32252282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.