These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 32429595)
41. Stillbirth in the pig in relation to genetic merit for farrowing survival. Leenhouwers JI; Wissink P; van der Lende T; Paridaans H; Knol EF J Anim Sci; 2003 Oct; 81(10):2419-24. PubMed ID: 14552367 [TBL] [Abstract][Full Text] [Related]
42. Low birth weight causes insulin resistance and aberrant intestinal lipid metabolism independent of microbiota abundance in Landrace-Large White pigs. Fontaine MA; Diane A; Singh VP; Mangat R; Krysa JA; Nelson R; Willing BP; Proctor SD FASEB J; 2019 Aug; 33(8):9250-9262. PubMed ID: 31144992 [TBL] [Abstract][Full Text] [Related]
44. The biological basis for prenatal programming of postnatal performance in pigs. Foxcroft GR; Dixon WT; Novak S; Putman CT; Town SC; Vinsky MD J Anim Sci; 2006 Apr; 84 Suppl():E105-12. PubMed ID: 16582081 [TBL] [Abstract][Full Text] [Related]
45. In large litters birth weight and gender is decisive for growth performance but less for carcass and pork quality traits. Bérard J; Kreuzer M; Bee G Meat Sci; 2010 Nov; 86(3):845-51. PubMed ID: 20696531 [TBL] [Abstract][Full Text] [Related]
46. Genetic parameters for haemoglobin levels in sows and piglets as well as sow reproductive performance and piglet survival. Hollema BL; Zwiers S; Hermesch S Animal; 2020 Apr; 14(4):688-696. PubMed ID: 31657286 [TBL] [Abstract][Full Text] [Related]
47. Effects of Oral Glutamine Supplementation on Early Postnatal Muscle Morphology in Low and Normal Birth Weight Piglets. Zhao Y; Albrecht E; Sciascia QL; Li Z; Görs S; Schregel J; Metges CC; Maak S Animals (Basel); 2020 Oct; 10(11):. PubMed ID: 33126436 [TBL] [Abstract][Full Text] [Related]
48. Dietary supplementation with β-hydroxy-β-methylbutyrate calcium during the early postnatal period accelerates skeletal muscle fibre growth and maturity in intra-uterine growth-retarded and normal-birth-weight piglets. Wan H; Zhu J; Su G; Liu Y; Hua L; Hu L; Wu C; Zhang R; Zhou P; Shen Y; Lin Y; Xu S; Fang Z; Che L; Feng B; Wu D Br J Nutr; 2016 Apr; 115(8):1360-9. PubMed ID: 26917333 [TBL] [Abstract][Full Text] [Related]
49. Administration of Glucose at Litter Equalization as a Strategy to Increase Energy in Intrauterine Growth Restricted Piglets. Klaaborg J; Amdi C Animals (Basel); 2020 Jul; 10(7):. PubMed ID: 32709098 [TBL] [Abstract][Full Text] [Related]
50. Effects of lysine deficiency on carcass composition and activity and gene expression of lipogenic enzymes in muscles and backfat adipose tissue of fatty and lean piglets. Palma-Granados P; Seiquer I; Benítez R; Óvilo C; Nieto R Animal; 2019 Oct; 13(10):2406-2418. PubMed ID: 31062674 [TBL] [Abstract][Full Text] [Related]
51. Very low birth weight piglets show improved cognitive performance in the spatial cognitive holeboard task. Antonides A; Schoonderwoerd AC; Nordquist RE; van der Staay FJ Front Behav Neurosci; 2015; 9():43. PubMed ID: 25774127 [TBL] [Abstract][Full Text] [Related]
52. Genetic selection against intrauterine growth retardation in piglets: a problem at the piglet level with a solution at the sow level. Matheson SM; Walling GA; Edwards SA Genet Sel Evol; 2018 Sep; 50(1):46. PubMed ID: 30227828 [TBL] [Abstract][Full Text] [Related]
53. Folic acid supplementation prevents the changes in hepatic promoter methylation status and gene expression in intrauterine growth-retarded piglets during early weaning period. Jing-Bo L; Ying Y; Bing Y; Xiang-Bing M; Zhi-Qing H; Guo-Quan H; Hong C; Dai-Wen C J Anim Physiol Anim Nutr (Berl); 2013 Oct; 97(5):878-86. PubMed ID: 22853634 [TBL] [Abstract][Full Text] [Related]
54. Evidence for litter differences in play behaviour in pre-weaned pigs. Brown SM; Klaffenböck M; Nevison IM; Lawrence AB Appl Anim Behav Sci; 2015 Nov; 172():17-25. PubMed ID: 26937060 [TBL] [Abstract][Full Text] [Related]
55. Effects of medium-chain triglycerides on intestinal morphology and energy metabolism of intrauterine growth retarded weanling piglets. Zhang LL; Zhang H; Li Y; Wang T Arch Anim Nutr; 2017 Jun; 71(3):231-245. PubMed ID: 28429991 [TBL] [Abstract][Full Text] [Related]
56. Medium-chain TAG improve energy metabolism and mitochondrial biogenesis in the liver of intra-uterine growth-retarded and normal-birth-weight weanling piglets. Zhang H; Li Y; Hou X; Zhang L; Wang T Br J Nutr; 2016 May; 115(9):1521-30. PubMed ID: 26960981 [TBL] [Abstract][Full Text] [Related]
57. Effects of dietary daidzein supplementation of pregnant sows on carcass and meat quality and skeletal muscle cellularity of the progeny. Rehfeldt C; Adamovic I; Kuhn G Meat Sci; 2007 Jan; 75(1):103-11. PubMed ID: 22063417 [TBL] [Abstract][Full Text] [Related]
58. Genetic determination of individual birth weight and its association with sow productivity traits using Bayesian analyses. Roehe R J Anim Sci; 1999 Feb; 77(2):330-43. PubMed ID: 10100660 [TBL] [Abstract][Full Text] [Related]
59. Effects of maternal folic acid supplementation on morphology and apoptosis-related gene expression in jejunum of newborn intrauterine growth retarded piglets. Liu J; Chen D; Mao X; Yu B Arch Anim Nutr; 2011 Oct; 65(5):376-85. PubMed ID: 22164959 [TBL] [Abstract][Full Text] [Related]
60. Maternal Supplementation with Polyphenols and Omega-3 Fatty Acids during Pregnancy: Prenatal Effects on Growth and Metabolism. Heras-Molina A; Pesántez-Pacheco JL; Garcia-Contreras C; Vázquez-Gómez M; López A; Benítez R; Núñez Y; Astiz S; Óvilo C; Isabel B; González-Bulnes A Animals (Basel); 2021 Jun; 11(6):. PubMed ID: 34200304 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]