BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32429692)

  • 1. Network Analyses of the Differential Expression of Heat Shock Proteins in Glioma.
    Sun H; Zou HY; Cai XY; Zhou HF; Li XQ; Xie WJ; Xie WM; Du ZP; Xu LY; Li EM; Wu BL
    DNA Cell Biol; 2020 Jul; 39(7):1228-1242. PubMed ID: 32429692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protein-protein interaction network and clinical significance of heat-shock proteins in esophageal squamous cell carcinoma.
    Sun H; Cai X; Zhou H; Li X; Du Z; Zou H; Wu J; Xie L; Cheng Y; Xie W; Lu X; Xu L; Chen L; Li E; Wu B
    Amino Acids; 2018 Jun; 50(6):685-697. PubMed ID: 29700654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glioma progression through the prism of heat shock protein mediated extracellular matrix remodeling and epithelial to mesenchymal transition.
    Rajesh Y; Biswas A; Mandal M
    Exp Cell Res; 2017 Oct; 359(2):299-311. PubMed ID: 28844885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the functional significance of HSP90AB1 and other heat shock proteins in countering glioblastomas and ependymomas using omics analysis and drug prediction using virtual screening.
    Sharma S; Kumar P
    Neuropeptides; 2023 Dec; 102():102383. PubMed ID: 37729687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candidate genes and microRNAs for glioma pathogenesis and prognosis based on gene expression profiles.
    Xie C; Xu M; Lu D; Zhang W; Wang L; Wang H; Li J; Ren F; Wang C
    Mol Med Rep; 2018 Sep; 18(3):2715-2723. PubMed ID: 30015885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abrogating HSP response augments cell death induced by As2O3 in glioma cell lines.
    Song X; Chen Z; Wu C; Zhao S
    Can J Neurol Sci; 2010 Jul; 37(4):504-11. PubMed ID: 20724260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated transcriptomic and computational analysis for biomarker identification in human glioma.
    Xing W; Zeng C
    Tumour Biol; 2016 Jun; 37(6):7185-92. PubMed ID: 26663173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibiting Heat Shock Proteins Can Potentiate the Cytotoxic Effect of Cannabidiol in Human Glioma Cells.
    Scott KA; Dennis JL; Dalgleish AG; Liu WM
    Anticancer Res; 2015 Nov; 35(11):5827-37. PubMed ID: 26504004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatic analysis of Cacybp-associated proteins using human glioma databases.
    Xuan C; Gao Y; Jin M; Xu S; Wang L; Wang Y; Han R; Shi K; Chen X; An Q
    IUBMB Life; 2019 Jul; 71(7):827-834. PubMed ID: 30762928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical, Prognostic and Therapeutic Significance of Heat Shock Proteins in Cancer.
    Saini J; Sharma PK
    Curr Drug Targets; 2018; 19(13):1478-1490. PubMed ID: 28831912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Identification of Key Genes and Pathways in Glioma by Bioinformatics Analysis.
    Liu M; Xu Z; Du Z; Wu B; Jin T; Xu K; Xu L; Li E; Xu H
    J Immunol Res; 2017; 2017():1278081. PubMed ID: 29362722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of key gene modules and pathways of human glioma through coexpression network.
    Shi T; Chen J; Li J; Yang BY; Zhang QL
    J Cell Physiol; 2019 Feb; 234(2):1862-1870. PubMed ID: 30067869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serpin family H member 1 and its related collagen gene network are the potential prognostic biomarkers and anticancer targets for glioma.
    Wang Q; Wang Z
    J Biochem Mol Toxicol; 2024 Jan; 38(1):e23541. PubMed ID: 37712121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the dual functional effects of heat shock proteins (HSPs) in cancer hallmarks to aid development of HSP inhibitors.
    Zhang Z; Jing J; Ye Y; Chen Z; Jing Y; Li S; Hong W; Ruan H; Liu Y; Hu Q; Wang J; Li W; Lin C; Diao L; Zhou Y; Han L
    Genome Med; 2020 Nov; 12(1):101. PubMed ID: 33225964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Genome-Scale Integrated Analysis to Identify Key Genes and Potential Molecular Mechanisms in Recurrence of Lower-Grade Brain Glioma.
    Deng T; Gong YZ; Wang XK; Liao XW; Huang KT; Zhu GZ; Chen HN; Guo FZ; Mo LG; Li LQ
    Med Sci Monit; 2019 May; 25():3716-3727. PubMed ID: 31104065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics analysis of two heat shock proteins in insects.
    Seddigh S
    J Biomol Struct Dyn; 2019 Jul; 37(10):2652-2668. PubMed ID: 30052126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the biological behavior of Heat shock protein (HSPs) for understanding the Anti-ischemic stroke in humans.
    Manikandan P; Vijayakumar R; Alshehri B; Senthilkumar S; Al-Aboody MS; Veluchamy A; Haribaskar R
    J Infect Public Health; 2022 Apr; 15(4):379-388. PubMed ID: 35299061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression analysis of heat-shock proteins and redox regulators reveals combinatorial prognostic markers in carcinomas of the gastrointestinal tract.
    Pohl SÖ; Pervaiz S; Dharmarajan A; Agostino M
    Redox Biol; 2019 Jul; 25():101060. PubMed ID: 30578123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between small heat shock protein B11 and the prognostic value of MGMT promoter methylation in patients with high-grade glioma.
    Cheng W; Li M; Jiang Y; Zhang C; Cai J; Wang K; Wu A
    J Neurosurg; 2016 Jul; 125(1):7-16. PubMed ID: 26544773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.