BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32429808)

  • 1. Coordinated changes across the O
    Tate KB; Wearing OH; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    Proc Biol Sci; 2020 May; 287(1927):20192750. PubMed ID: 32429808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice.
    Tate KB; Ivy CM; Velotta JP; Storz JF; McClelland GB; Cheviron ZA; Scott GR
    J Exp Biol; 2017 Oct; 220(Pt 20):3616-3620. PubMed ID: 28839010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes.
    Mahalingam S; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    J Physiol; 2020 Dec; 598(23):5411-5426. PubMed ID: 32886797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice.
    Lui MA; Mahalingam S; Patel P; Connaty AD; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(9):R779-91. PubMed ID: 25695288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of breathing and ventilatory acclimatization to hypoxia in deer mice native to high altitudes.
    Ivy CM; Scott GR
    Acta Physiol (Oxf); 2017 Dec; 221(4):266-282. PubMed ID: 28640969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermogenesis is supported by high rates of circulatory fatty acid and triglyceride delivery in highland deer mice.
    Lyons SA; McClelland GB
    J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35552735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of non-shivering thermogenesis and brown adipose tissue in high-altitude deer mice.
    Coulson SZ; Robertson CE; Mahalingam S; McClelland GB
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 34060604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolved changes in breathing and CO
    Ivy CM; Scott GR
    Am J Physiol Regul Integr Comp Physiol; 2018 Nov; 315(5):R1027-R1037. PubMed ID: 30183337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct Mechanisms Underlie Developmental Plasticity and Adult Acclimation of Thermogenic Capacity in High-Altitude Deer Mice.
    Ivy CM; Prest H; West CM; Scott GR
    Front Physiol; 2021; 12():718163. PubMed ID: 34456754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice.
    Mahalingam S; McClelland GB; Scott GR
    J Physiol; 2017 Jul; 595(14):4785-4801. PubMed ID: 28418073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and developmental plasticity of lung structure in high-altitude deer mice.
    West CM; Ivy CM; Husnudinov R; Scott GR
    J Comp Physiol B; 2021 Mar; 191(2):385-396. PubMed ID: 33533958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid oxidation during thermogenesis in high-altitude deer mice (
    Lyons SA; Tate KB; Welch KC; McClelland GB
    Am J Physiol Regul Integr Comp Physiol; 2021 May; 320(5):R735-R746. PubMed ID: 33729020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.
    Cheviron ZA; Bachman GC; Connaty AD; McClelland GB; Storz JF
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8635-40. PubMed ID: 22586089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice.
    Velotta JP; Jones J; Wolf CJ; Cheviron ZA
    Mol Ecol; 2016 Jun; 25(12):2870-86. PubMed ID: 27126783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolved changes in phenotype across skeletal muscles in deer mice native to high altitude.
    Garrett EJ; Prasad SK; Schweizer RM; McClelland GB; Scott GR
    Am J Physiol Regul Integr Comp Physiol; 2024 Apr; 326(4):R297-R310. PubMed ID: 38372126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adrenergic control of the cardiovascular system in deer mice native to high altitude.
    Wearing OH; Nelson D; Ivy CM; Crossley DA; Scott GR
    Curr Res Physiol; 2022; 5():83-92. PubMed ID: 35169714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The adaptive benefit of evolved increases in hemoglobin-O
    Wearing OH; Ivy CM; Gutiérrez-Pinto N; Velotta JP; Campbell-Staton SC; Natarajan C; Cheviron ZA; Storz JF; Scott GR
    BMC Biol; 2021 Jun; 19(1):128. PubMed ID: 34158035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance.
    Cheviron ZA; Connaty AD; McClelland GB; Storz JF
    Evolution; 2014 Jan; 68(1):48-62. PubMed ID: 24102503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice.
    Cheviron ZA; Bachman GC; Storz JF
    J Exp Biol; 2013 Apr; 216(Pt 7):1160-6. PubMed ID: 23197099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chronic hypoxia on diaphragm function in deer mice native to high altitude.
    Dawson NJ; Lyons SA; Henry DA; Scott GR
    Acta Physiol (Oxf); 2018 May; 223(1):e13030. PubMed ID: 29316265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.