These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 32430011)
1. Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66. Guo S; Wang Y; Wang W; Hu H; Zhang X Microb Cell Fact; 2020 May; 19(1):105. PubMed ID: 32430011 [TBL] [Abstract][Full Text] [Related]
2. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine Guo S; Liu R; Wang W; Hu H; Li Z; Zhang X ACS Synth Biol; 2020 Apr; 9(4):883-892. PubMed ID: 32197042 [TBL] [Abstract][Full Text] [Related]
3. Production of Antibacterial Questiomycin A in Metabolically Engineered Guo S; Hu H; Wang W; Bilal M; Zhang X J Agric Food Chem; 2022 Jun; 70(25):7742-7750. PubMed ID: 35708224 [No Abstract] [Full Text] [Related]
4. Enhanced biosynthesis of phenazine-1-carboxamide by engineered Pseudomonas chlororaphis HT66. Peng H; Zhang P; Bilal M; Wang W; Hu H; Zhang X Microb Cell Fact; 2018 Jul; 17(1):117. PubMed ID: 30045743 [TBL] [Abstract][Full Text] [Related]
5. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs. Peng H; Tan J; Bilal M; Wang W; Hu H; Zhang X World J Microbiol Biotechnol; 2018 Aug; 34(9):129. PubMed ID: 30094643 [TBL] [Abstract][Full Text] [Related]
6. PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66. Guo S; Wang Y; Dai B; Wang W; Hu H; Huang X; Zhang X Appl Microbiol Biotechnol; 2017 Oct; 101(19):7165-7175. PubMed ID: 28871340 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18. Wan Y; Liu H; Xian M; Huang W Microb Cell Fact; 2021 Dec; 20(1):235. PubMed ID: 34965873 [TBL] [Abstract][Full Text] [Related]
8. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine. Liu K; Hu H; Wang W; Zhang X Microb Cell Fact; 2016 Jul; 15(1):131. PubMed ID: 27470070 [TBL] [Abstract][Full Text] [Related]
9. Metabolic Engineering of Li L; Li Z; Yao W; Zhang X; Wang R; Li P; Yang K; Wang T; Liu K J Agric Food Chem; 2020 Dec; 68(50):14832-14840. PubMed ID: 33287542 [TBL] [Abstract][Full Text] [Related]
10. Enhanced biosynthesis of arbutin by engineering shikimate pathway in Pseudomonas chlororaphis P3. Wang S; Fu C; Bilal M; Hu H; Wang W; Zhang X Microb Cell Fact; 2018 Nov; 17(1):174. PubMed ID: 30414616 [TBL] [Abstract][Full Text] [Related]
11. iTRAQ-based quantitative proteomic analysis reveals potential factors associated with the enhancement of phenazine-1-carboxamide production in Pseudomonas chlororaphis P3. Jin XJ; Peng HS; Hu HB; Huang XQ; Wang W; Zhang XH Sci Rep; 2016 Jun; 6():27393. PubMed ID: 27273243 [TBL] [Abstract][Full Text] [Related]
12. Development of a Plasmid-Free Biosynthetic Pathway for Enhanced Muconic Acid Production in Pseudomonas chlororaphis HT66. Wang S; Bilal M; Zong Y; Hu H; Wang W; Zhang X ACS Synth Biol; 2018 Apr; 7(4):1131-1142. PubMed ID: 29608278 [TBL] [Abstract][Full Text] [Related]
13. Metabolic Degradation and Bioactive Derivative Synthesis of Phenazine-1-Carboxylic Acid by Genetically Engineered Guo S; Zhao Q; Hu H; Wang W; Bilal M; Fei Q; Zhang X J Agric Food Chem; 2023 Jun; 71(22):8508-8515. PubMed ID: 37247609 [TBL] [Abstract][Full Text] [Related]
14. Lon protease downregulates phenazine-1-carboxamide biosynthesis by degrading the quorum sensing signal synthase PhzI and exhibits negative feedback regulation of Lon itself in Pseudomonas chlororaphis HT66. Wang Z; Huang X; Jan M; Kong D; Wang W; Zhang X Mol Microbiol; 2021 Aug; 116(2):690-706. PubMed ID: 34097792 [TBL] [Abstract][Full Text] [Related]
15. Microbial Synthesis of Antibacterial Phenazine-1,6-dicarboxylic Acid and the Role of PhzG in Guo S; Wang Y; Bilal M; Hu H; Wang W; Zhang X J Agric Food Chem; 2020 Feb; 68(8):2373-2380. PubMed ID: 32013409 [No Abstract] [Full Text] [Related]
16. Identification, synthesis and regulatory function of the N-acylated homoserine lactone signals produced by Pseudomonas chlororaphis HT66. Peng H; Ouyang Y; Bilal M; Wang W; Hu H; Zhang X Microb Cell Fact; 2018 Jan; 17(1):9. PubMed ID: 29357848 [TBL] [Abstract][Full Text] [Related]
17. Production of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered Pseudomonas chlororaphis GP72. Hu H; Li Y; Liu K; Zhao J; Wang W; Zhang X Appl Microbiol Biotechnol; 2017 Sep; 101(17):6607-6613. PubMed ID: 28702795 [TBL] [Abstract][Full Text] [Related]
18. Isolation, identification, and accumulation of 2-acetamidophenol in liquid cultures of the wheat take-all biocontrol agent Pseudomonas fluorescens 2-79. Slininger PJ; Burkhead KD; Schisler DA; Bothast RJ Appl Microbiol Biotechnol; 2000 Sep; 54(3):376-81. PubMed ID: 11030575 [TBL] [Abstract][Full Text] [Related]
19. Genetic engineering of Pseudomonas chlororaphis Lzh-T5 to enhance production of trans-2,3-dihydro-3-hydroxyanthranilic acid. Liu K; Li L; Yao W; Wang W; Huang Y; Wang R; Li P Sci Rep; 2021 Aug; 11(1):16451. PubMed ID: 34385485 [TBL] [Abstract][Full Text] [Related]
20. Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production. Song C; Yue SJ; Liu WH; Zheng YF; Zhang CH; Feng TT; Hu HB; Wang W; Zhang XH World J Microbiol Biotechnol; 2020 Mar; 36(3):49. PubMed ID: 32157439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]