BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32430326)

  • 21. Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures.
    Thomsson E; Gustafsson L; Larsson C
    Appl Environ Microbiol; 2005 Jun; 71(6):3007-13. PubMed ID: 15932996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atg11 is required for initiation of glucose starvation-induced autophagy.
    Yao W; Li Y; Wu L; Wu C; Zhang Y; Liu J; He Z; Wu X; Lu C; Wang L; Zhong H; Hong Z; Xu S; Liu W; Yi C
    Autophagy; 2020 Dec; 16(12):2206-2218. PubMed ID: 31971848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast.
    Huang H; Kawamata T; Horie T; Tsugawa H; Nakayama Y; Ohsumi Y; Fukusaki E
    EMBO J; 2015 Jan; 34(2):154-68. PubMed ID: 25468960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. cAMP-Protein kinase A and stress-activated MAP kinase signaling mediate transcriptional control of autophagy in fission yeast during glucose limitation or starvation.
    Pérez-Díaz AJ; Vázquez-Marín B; Vicente-Soler J; Prieto-Ruiz F; Soto T; Franco A; Cansado J; Madrid M
    Autophagy; 2023 Apr; 19(4):1311-1331. PubMed ID: 36107819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Springing into Action: Reg2 Negatively Regulates Snf1 Protein Kinase and Facilitates Recovery from Prolonged Glucose Starvation in Saccharomyces cerevisiae.
    Maziarz M; Shevade A; Barrett L; Kuchin S
    Appl Environ Microbiol; 2016 Jul; 82(13):3875-3885. PubMed ID: 27107116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Physiological role of autophagy for starvation-adaptation in yeast].
    Onodera J; Ohsumi Y
    Tanpakushitsu Kakusan Koso; 2006 Aug; 51(10 Suppl):1499-502. PubMed ID: 16922427
    [No Abstract]   [Full Text] [Related]  

  • 27. Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae.
    Alvers AL; Fishwick LK; Wood MS; Hu D; Chung HS; Dunn WA; Aris JP
    Aging Cell; 2009 Aug; 8(4):353-69. PubMed ID: 19302372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the role of the transcriptional regulator Ure2 on the metabolism of Saccharomyces cerevisiae: a multi-omics approach.
    Liu JJ; Woodruff W; Deewan A; Jagtap SS; Yun EJ; Walukiewicz HE; Jin YS; Rao CV
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):5103-5112. PubMed ID: 34152451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae.
    Lefevre SD; van Roermund CW; Wanders RJ; Veenhuis M; van der Klei IJ
    Aging Cell; 2013 Oct; 12(5):784-93. PubMed ID: 23755917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of inositol pyrophosphates on cellular energy dynamics.
    Szijgyarto Z; Garedew A; Azevedo C; Saiardi A
    Science; 2011 Nov; 334(6057):802-5. PubMed ID: 22076377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Attenuation of transcriptional and signaling responses limits viability of ρ(0)Saccharomyces cerevisiae during periods of glucose deprivation.
    Friis RMN; Schultz MC
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt A):2563-2575. PubMed ID: 27478089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation.
    Onodera J; Ohsumi Y
    J Biol Chem; 2005 Sep; 280(36):31582-6. PubMed ID: 16027116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adenylate energy charge in Saccharomyces cerevisiae during starvation.
    Ball WJ; Atkinson DE
    J Bacteriol; 1975 Mar; 121(3):975-82. PubMed ID: 1090610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Both the autophagy and proteasomal pathways facilitate the Ubp3p-dependent depletion of a subset of translation and RNA turnover factors during nitrogen starvation in Saccharomyces cerevisiae.
    Kelly SP; Bedwell DM
    RNA; 2015 May; 21(5):898-910. PubMed ID: 25795416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy metabolism regulates clathrin adaptors at the trans-Golgi network and endosomes.
    Aoh QL; Hung CW; Duncan MC
    Mol Biol Cell; 2013 Mar; 24(6):832-47. PubMed ID: 23345590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimulation of active uptake of nucleosides and amino acids by cyclic adenosine 3' :5'-monophosphate in the yeast Schizosaccharomyces pombe.
    Foury F; Goffeau A
    J Biol Chem; 1975 Mar; 250(6):2354-62. PubMed ID: 163826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of autophagy by phosphate starvation in an Atg11-dependent manner in Saccharomyces cerevisiae.
    Yokota H; Gomi K; Shintani T
    Biochem Biophys Res Commun; 2017 Jan; 483(1):522-527. PubMed ID: 28013049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. General Control Nonderepressible 2 (GCN2) Kinase Inhibits Target of Rapamycin Complex 1 in Response to Amino Acid Starvation in
    Yuan W; Guo S; Gao J; Zhong M; Yan G; Wu W; Chao Y; Jiang Y
    J Biol Chem; 2017 Feb; 292(7):2660-2669. PubMed ID: 28057755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulatory mechanism for expression of GPX1 in response to glucose starvation and Ca in Saccharomyces cerevisiae: involvement of Snf1 and Ras/cAMP pathway in Ca signaling.
    Ohdate T; Izawa S; Kita K; Inoue Y
    Genes Cells; 2010 Jan; 15(1):59-75. PubMed ID: 20002498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical and metabolic regulation of glucose influx in starved Saccharomyces cerevisiae.
    Rossell S; van der Weijden CC; Kruckeberg AL; Bakker BM; Westerhoff HV
    FEMS Yeast Res; 2005 Apr; 5(6-7):611-9. PubMed ID: 15780660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.