These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32430552)
21. Basin management inspiration from impacts of alternating dry and wet conditions on water production and carbon uptake in Murray-Darling Basin. Lu Z; Feng Q; Wei Y; Zhao Y; Deo RC; Xie J; Zhou S; Zhu M; Xu M Sci Total Environ; 2022 Dec; 851(Pt 2):158359. PubMed ID: 36055509 [TBL] [Abstract][Full Text] [Related]
22. Population genetics and management units of invasive common carp Cyprinus carpio in the Murray-Darling Basin, Australia. Haynes GD; Gilligan DM; Grewe P; Nicholas FW J Fish Biol; 2009 Aug; 75(2):295-320. PubMed ID: 20738540 [TBL] [Abstract][Full Text] [Related]
23. Strategic planning for instream flow restoration: a case study of potential climate change impacts in the central Columbia River basin. Donley EE; Naiman RJ; Marineau MD Glob Chang Biol; 2012 Oct; 18(10):3071-3086. PubMed ID: 28741832 [TBL] [Abstract][Full Text] [Related]
24. Procedures for ensuring community involvement in multijurisdictional river basins: a comparison of the Murray-Darling and Mekong river basins. Chenoweth JL; Ewing SA; Bird JF Environ Manage; 2002 Apr; 29(4):497-509. PubMed ID: 12071500 [TBL] [Abstract][Full Text] [Related]
25. A disaggregated assessment of national water security: An application to the river basins in Thailand. Babel MS; Chapagain K; Shinde VR; Prajamwong S; Apipattanavis S J Environ Manage; 2022 Nov; 321():115974. PubMed ID: 36027732 [TBL] [Abstract][Full Text] [Related]
26. Using a Population Model to Inform the Management of River Flows and Invasive Carp (Cyprinus carpio). Koehn JD; Todd CR; Zampatti BP; Stuart IG; Conallin A; Thwaites L; Ye Q Environ Manage; 2018 Mar; 61(3):432-442. PubMed ID: 28421268 [TBL] [Abstract][Full Text] [Related]
27. River basin governance enabling pathways for sustainable management: A comparative study between Australia, Brazil, China and France. Bouckaert FW; Wei Y; Pittock J; Vasconcelos V; Ison R Ambio; 2022 Aug; 51(8):1871-1888. PubMed ID: 35316505 [TBL] [Abstract][Full Text] [Related]
28. Linking flow attributes to recruitment to inform water management for an Australian freshwater fish with an equilibrium life-history strategy. Tonkin Z; Yen J; Lyon J; Kitchingman A; Koehn JD; Koster WM; Lieschke J; Raymond S; Sharley J; Stuart I; Todd C Sci Total Environ; 2021 Jan; 752():141863. PubMed ID: 32889283 [TBL] [Abstract][Full Text] [Related]
29. Analysis of Runoff Trends and Drivers in the Haihe River Basin, China. Xu H; Ren Y; Zheng H; Ouyang Z; Jiang B Int J Environ Res Public Health; 2020 Feb; 17(5):. PubMed ID: 32121369 [TBL] [Abstract][Full Text] [Related]
30. Climate phase drives canopy condition in a large semi-arid floodplain forest. Wen L; Saintilan N J Environ Manage; 2015 Aug; 159():279-287. PubMed ID: 26027753 [TBL] [Abstract][Full Text] [Related]
31. High‑magnesium waters and soils: Emerging environmental and food security constraints. Qadir M; Schubert S; Oster JD; Sposito G; Minhas PS; Cheraghi SAM; Murtaza G; Mirzabaev A; Saqib M Sci Total Environ; 2018 Nov; 642():1108-1117. PubMed ID: 30045492 [TBL] [Abstract][Full Text] [Related]
32. Adaptation services of floodplains and wetlands under transformational climate change. Colloff M; Lavorel S; Wise RM; Dunlop M; Overton IC; Williams KJ Ecol Appl; 2016 Jun; 26(4):1003-17. PubMed ID: 27509744 [TBL] [Abstract][Full Text] [Related]
33. Toward a synthetic economic systems modeling tool for sustainable exploitation of ecosystems. Richardson C; Courvisanos J; Crawford JW Ann N Y Acad Sci; 2011 Feb; 1219():171-84. PubMed ID: 21332498 [TBL] [Abstract][Full Text] [Related]
34. A combined site proximity and recreation index approach to value natural amenities: an example from a natural resource management region of Murray-Darling Basin. Tapsuwan S; Macdonald DH; King D; Poudyal N J Environ Manage; 2012 Feb; 94(1):69-77. PubMed ID: 21924814 [TBL] [Abstract][Full Text] [Related]
35. The Impact of Upstream Sub-basins' Water Use on Middle Stream and Downstream Sub-basins' Water Security at Country-Basin Unit Spatial Scale and Monthly Temporal Resolution. Degefu DM; Liao Z; He W; Yuan L; An M; Zhang Z; Xia W Int J Environ Res Public Health; 2019 Feb; 16(3):. PubMed ID: 30717493 [TBL] [Abstract][Full Text] [Related]
36. Coupling environment and physiology to predict effects of climate change on the taxonomic and functional diversity of fish assemblages in the Murray-Darling Basin, Australia. Oliveira AGd; Bailly D; Cassemiro FAS; Couto EVD; Bond N; Gilligan D; Rangel TF; Agostinho AA; Kennard MJ PLoS One; 2019; 14(11):e0225128. PubMed ID: 31774852 [TBL] [Abstract][Full Text] [Related]
37. Ecological security assessment of Chaohu Lake Basin of China in the context of River Chief System reform. Tang Y; Zhao X; Jiao J Environ Sci Pollut Res Int; 2020 Jan; 27(3):2773-2785. PubMed ID: 31836980 [TBL] [Abstract][Full Text] [Related]
38. Application of FISK, an invasiveness screening tool for non-native freshwater fishes, in the Murray-Darling Basin (southeastern Australia). Vilizzi L; Copp GH Risk Anal; 2013 Aug; 33(8):1432-40. PubMed ID: 23051595 [TBL] [Abstract][Full Text] [Related]
39. The floodplain inundation history of the Murray-Darling Basin through two-monthly maximum water depth maps. Penton DJ; Teng J; Ticehurst C; Marvanek S; Freebairn A; Mateo C; Vaze J; Yang A; Khanam F; Sengupta A; Pollino C Sci Data; 2023 Sep; 10(1):652. PubMed ID: 37741870 [TBL] [Abstract][Full Text] [Related]
40. Distribution of inland wetlands with sulfidic sediments in the Murray-Darling Basin, Australia. Hall KC; Baldwin DS; Rees GN; Richardson AJ Sci Total Environ; 2006 Oct; 370(1):235-44. PubMed ID: 16930680 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]