BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32430694)

  • 21. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis.
    Zhang E; Seiler S; Chen M; Lu W; Gu X
    Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model.
    Hu Y; Guo Y; Wang Y; Yu J; Li J; Zhou S; Chang C
    Med Phys; 2019 Jan; 46(1):215-228. PubMed ID: 30374980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
    Lucena O; Souza R; Rittner L; Frayne R; Lotufo R
    Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation.
    Weeda MM; Brouwer I; de Vos ML; de Vries MS; Barkhof F; Pouwels PJW; Vrenken H
    Neuroimage Clin; 2019; 24():102074. PubMed ID: 31734527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network.
    Jacobsen N; Deistung A; Timmann D; Goericke SL; Reichenbach JR; Güllmar D
    Z Med Phys; 2019 May; 29(2):128-138. PubMed ID: 30579766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound Image Segmentation: A Deeply Supervised Network With Attention to Boundaries.
    Mishra D; Chaudhury S; Sarkar M; Soin AS
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1637-1648. PubMed ID: 30346279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
    Xu X; Zhou F; Liu B
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy.
    Anas EMA; Mousavi P; Abolmaesumi P
    Med Image Anal; 2018 Aug; 48():107-116. PubMed ID: 29886268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound.
    Gómez-Flores W; Coelho de Albuquerque Pereira W
    Comput Biol Med; 2020 Nov; 126():104036. PubMed ID: 33059238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic Tracking of Muscle Cross-Sectional Area Using Convolutional Neural Networks with Ultrasound.
    Chen X; Xie C; Chen Z; Li Q
    J Ultrasound Med; 2019 Nov; 38(11):2901-2908. PubMed ID: 30937932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep learning-based liver segmentation for fusion-guided intervention.
    Fang X; Xu S; Wood BJ; Yan P
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):963-972. PubMed ID: 32314228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SegAE: Unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder.
    Atlason HE; Love A; Sigurdsson S; Gudnason V; Ellingsen LM
    Neuroimage Clin; 2019; 24():102085. PubMed ID: 31835288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Segmentation of bone surface from ultrasound using a lightweight network UBS-Net.
    Peng F; Zhang Y; Cui S; Wang B; Wang D; Shi Z; Li L; Fang X; Yang Z
    Biomed Phys Eng Express; 2024 Apr; 10(3):. PubMed ID: 38588648
    [No Abstract]   [Full Text] [Related]  

  • 36. Segmentation of finger tendon and synovial sheath in ultrasound image using deep convolutional neural network.
    Kuok CP; Yang TH; Tsai BS; Jou IM; Horng MH; Su FC; Sun YN
    Biomed Eng Online; 2020 Apr; 19(1):24. PubMed ID: 32321523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Volume-specific parameter optimization of 3D local phase features for improved extraction of bone surfaces in ultrasound.
    Hacihaliloglu I; Guy P; Hodgson AJ; Abugharbieh R
    Int J Med Robot; 2014 Dec; 10(4):461-73. PubMed ID: 24403007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic liver segmentation by integrating fully convolutional networks into active contour models.
    Guo X; Schwartz LH; Zhao B
    Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants.
    Gontard LC; Pizarro J; Sanz-Peña B; Lubián López SP; Benavente-Fernández I
    Sci Rep; 2021 Jan; 11(1):567. PubMed ID: 33436974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.