BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32430981)

  • 21. Necroptotic cancer cells-mimicry nanovaccine boosts anti-tumor immunity with tailored immune-stimulatory modality.
    Kang T; Huang Y; Zhu Q; Cheng H; Pei Y; Feng J; Xu M; Jiang G; Song Q; Jiang T; Chen H; Gao X; Chen J
    Biomaterials; 2018 May; 164():80-97. PubMed ID: 29499438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanovaccines for cancer immunotherapy: Focusing on complex formation between adjuvant and antigen.
    Hashemi Goradel N; Nemati M; Bakhshandeh A; Arashkia A; Negahdari B
    Int Immunopharmacol; 2023 Apr; 117():109887. PubMed ID: 36841155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer Immunotherapy of TLR4 Agonist-Antigen Constructs Enhanced with Pathogen-Mimicking Magnetite Nanoparticles and Checkpoint Blockade of PD-L1.
    Traini G; Ruiz-de-Angulo A; Blanco-Canosa JB; Zamacola Bascarán K; Molinaro A; Silipo A; Escors D; Mareque-Rivas JC
    Small; 2019 Jan; 15(4):e1803993. PubMed ID: 30569516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The novel complex combination of alum, CpG ODN and HH2 as adjuvant in cancer vaccine effectively suppresses tumor growth in vivo.
    Tian Y; Li M; Yu C; Zhang R; Zhang X; Huang R; Lu L; Yuan F; Fan Y; Zhou B; Men K; Xu H; Yang L
    Oncotarget; 2017 Jul; 8(28):45951-45964. PubMed ID: 28515346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lymph node-targeted neoantigen nanovaccines potentiate anti-tumor immune responses of post-surgical melanoma.
    Chu Y; Qian L; Ke Y; Feng X; Chen X; Liu F; Yu L; Zhang L; Tao Y; Xu R; Wei J; Liu B; Liu Q
    J Nanobiotechnology; 2022 Apr; 20(1):190. PubMed ID: 35418151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy.
    Zhang L; Wu S; Qin Y; Fan F; Zhang Z; Huang C; Ji W; Lu L; Wang C; Sun H; Leng X; Kong D; Zhu D
    Nano Lett; 2019 Jul; 19(7):4237-4249. PubMed ID: 30868883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy.
    Xu J; Wang H; Xu L; Chao Y; Wang C; Han X; Dong Z; Chang H; Peng R; Cheng Y; Liu Z
    Biomaterials; 2019 Jul; 207():1-9. PubMed ID: 30947117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound-Mediated Remotely Controlled Nanovaccine Delivery for Tumor Vaccination and Individualized Cancer Immunotherapy.
    Meng Z; Zhang Y; She J; Zhou X; Xu J; Han X; Wang C; Zhu M; Liu Z
    Nano Lett; 2021 Feb; 21(3):1228-1237. PubMed ID: 33522825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanobiomaterial-based vaccination immunotherapy of cancer.
    Chen F; Wang Y; Gao J; Saeed M; Li T; Wang W; Yu H
    Biomaterials; 2021 Mar; 270():120709. PubMed ID: 33581608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses.
    Liu X; Feng Z; Wang C; Su Q; Song H; Zhang C; Huang P; Liang XJ; Dong A; Kong D; Wang W
    Biomaterials; 2020 Feb; 230():119649. PubMed ID: 31791843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanotechnology-based platforms to improve immune checkpoint blockade efficacy in cancer therapy.
    G Lahori D; Varamini P
    Future Oncol; 2021 Feb; 17(6):711-722. PubMed ID: 33136464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A biotin-avidin-system-based virus-mimicking nanovaccine for tumor immunotherapy.
    Lu Z; Zhang Y; Wang Y; Tan GH; Huang FY; Cao R; He N; Zhang L
    J Control Release; 2021 Apr; 332():245-259. PubMed ID: 33647430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dendritic cell-based nanovaccines for cancer immunotherapy.
    Paulis LE; Mandal S; Kreutz M; Figdor CG
    Curr Opin Immunol; 2013 Jun; 25(3):389-95. PubMed ID: 23571027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges.
    Ahmad MZ; Ahmad J; Haque A; Alasmary MY; Abdel-Wahab BA; Akhter S
    Expert Rev Vaccines; 2020 Nov; 19(11):1053-1071. PubMed ID: 33315512
    [No Abstract]   [Full Text] [Related]  

  • 35. Dendritic Cell-Based In Situ Nanovaccine for Reprogramming Lipid Metabolism to Boost Tumor Immunotherapy.
    Qin YT; Liu XH; An JX; Liang JL; Li CX; Jin XK; Ji P; Zhang XZ
    ACS Nano; 2023 Dec; 17(24):24947-24960. PubMed ID: 38055727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Situ Antigen-Capturing Nanochaperone Toward Personalized Nanovaccine for Cancer Immunotherapy.
    Li X; Zhang Y; Wu X; Chen J; Yang M; Ma F; Shi L
    Small; 2022 Aug; 18(32):e2203100. PubMed ID: 35843873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Versatile Nanovaccine Enhancement Strategy Based on Suction-Inspired Physical Therapy.
    Wu J; Feng Y; Guo X; Meng M; Li H; Fang H; Li Z; Lin L; Guo Z; Chen J; Tian H; Chen X
    ACS Nano; 2024 Feb; 18(6):4957-4971. PubMed ID: 38288709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy.
    Luo M; Liu Z; Zhang X; Han C; Samandi LZ; Dong C; Sumer BD; Lea J; Fu YX; Gao J
    J Control Release; 2019 Apr; 300():154-160. PubMed ID: 30844475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combinatory therapy adopting nanoparticle-based cancer vaccination with immune checkpoint blockade for treatment of post-surgical tumor recurrences.
    Chung CK; Da Silva CG; Kralisch D; Chan A; Ossendorp F; Cruz LJ
    J Control Release; 2018 Sep; 285():56-66. PubMed ID: 30008371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Nanovaccine Delivery in Cancer Immunotherapy.
    Zhu G; Zhang F; Ni Q; Niu G; Chen X
    ACS Nano; 2017 Mar; 11(3):2387-2392. PubMed ID: 28277646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.