These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
657 related articles for article (PubMed ID: 32431014)
1. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics. Bravo González-Blas C; Quan XJ; Duran-Romaña R; Taskiran II; Koldere D; Davie K; Christiaens V; Makhzami S; Hulselmans G; de Waegeneer M; Mauduit D; Poovathingal S; Aibar S; Aerts S Mol Syst Biol; 2020 May; 16(5):e9438. PubMed ID: 32431014 [TBL] [Abstract][Full Text] [Related]
2. Discovery of transcription factors and regulatory regions driving in vivo tumor development by ATAC-seq and FAIRE-seq open chromatin profiling. Davie K; Jacobs J; Atkins M; Potier D; Christiaens V; Halder G; Aerts S PLoS Genet; 2015 Feb; 11(2):e1004994. PubMed ID: 25679813 [TBL] [Abstract][Full Text] [Related]
4. A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data. Loers JU; Vermeirssen V Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39207727 [TBL] [Abstract][Full Text] [Related]
5. The Drosophila gypsy insulator supports transvection in the presence of the vestigial enhancer. Schoborg T; Kuruganti S; Rickels R; Labrador M PLoS One; 2013; 8(11):e81331. PubMed ID: 24236213 [TBL] [Abstract][Full Text] [Related]
6. Cis-regulatory chromatin loops arise before TADs and gene activation, and are independent of cell fate during early Drosophila development. Espinola SM; Götz M; Bellec M; Messina O; Fiche JB; Houbron C; Dejean M; Reim I; Cardozo Gizzi AM; Lagha M; Nollmann M Nat Genet; 2021 Apr; 53(4):477-486. PubMed ID: 33795867 [TBL] [Abstract][Full Text] [Related]
7. Hormone-dependent control of developmental timing through regulation of chromatin accessibility. Uyehara CM; Nystrom SL; Niederhuber MJ; Leatham-Jensen M; Ma Y; Buttitta LA; McKay DJ Genes Dev; 2017 May; 31(9):862-875. PubMed ID: 28536147 [TBL] [Abstract][Full Text] [Related]
8. Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data. Li Y; Ma A; Wang Y; Guo Q; Wang C; Fu H; Liu B; Ma Q Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39082647 [TBL] [Abstract][Full Text] [Related]
9. Expression of E93 provides an instructive cue to control dynamic enhancer activity and chromatin accessibility during development. Nystrom SL; Niederhuber MJ; McKay DJ Development; 2020 Mar; 147(6):. PubMed ID: 32094114 [TBL] [Abstract][Full Text] [Related]
10. scEnhancer: a single-cell enhancer resource with annotation across hundreds of tissue/cell types in three species. Gao T; Zheng Z; Pan Y; Zhu C; Wei F; Yuan J; Sun R; Fang S; Wang N; Zhou Y; Qian J Nucleic Acids Res; 2022 Jan; 50(D1):D371-D379. PubMed ID: 34761274 [TBL] [Abstract][Full Text] [Related]
11. Robust target gene discovery through transcriptome perturbations and genome-wide enhancer predictions in Drosophila uncovers a regulatory basis for sensory specification. Aerts S; Quan XJ; Claeys A; Naval Sanchez M; Tate P; Yan J; Hassan BA PLoS Biol; 2010 Jul; 8(7):e1000435. PubMed ID: 20668662 [TBL] [Abstract][Full Text] [Related]
12. Drosophila eyes absent is required for normal cone and pigment cell development. Karandikar UC; Jin M; Jusiak B; Kwak S; Chen R; Mardon G PLoS One; 2014; 9(7):e102143. PubMed ID: 25057928 [TBL] [Abstract][Full Text] [Related]
13. Chromatin accessibility and gene expression during adipocyte differentiation identify context-dependent effects at cardiometabolic GWAS loci. Perrin HJ; Currin KW; Vadlamudi S; Pandey GK; Ng KK; Wabitsch M; Laakso M; Love MI; Mohlke KL PLoS Genet; 2021 Oct; 17(10):e1009865. PubMed ID: 34699533 [TBL] [Abstract][Full Text] [Related]
14. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Parker SC; Stitzel ML; Taylor DL; Orozco JM; Erdos MR; Akiyama JA; van Bueren KL; Chines PS; Narisu N; ; Black BL; Visel A; Pennacchio LA; Collins FS; ; Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17921-6. PubMed ID: 24127591 [TBL] [Abstract][Full Text] [Related]
15. ATAC-seq reveals regional differences in enhancer accessibility during the establishment of spatial coordinates in the Bozek M; Cortini R; Storti AE; Unnerstall U; Gaul U; Gompel N Genome Res; 2019 May; 29(5):771-783. PubMed ID: 30962180 [TBL] [Abstract][Full Text] [Related]
16. Histone ChIP-Seq identifies differential enhancer usage during chondrogenesis as critical for defining cell-type specificity. Cheung K; Barter MJ; Falk J; Proctor CJ; Reynard LN; Young DA FASEB J; 2020 Apr; 34(4):5317-5331. PubMed ID: 32058623 [TBL] [Abstract][Full Text] [Related]
17. Comparative motif discovery combined with comparative transcriptomics yields accurate targetome and enhancer predictions. Naval-Sánchez M; Potier D; Haagen L; Sánchez M; Munck S; Van de Sande B; Casares F; Christiaens V; Aerts S Genome Res; 2013 Jan; 23(1):74-88. PubMed ID: 23070853 [TBL] [Abstract][Full Text] [Related]
18. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin. Ma S; Zhang B; LaFave LM; Earl AS; Chiang Z; Hu Y; Ding J; Brack A; Kartha VK; Tay T; Law T; Lareau C; Hsu YC; Regev A; Buenrostro JD Cell; 2020 Nov; 183(4):1103-1116.e20. PubMed ID: 33098772 [TBL] [Abstract][Full Text] [Related]
19. Chromatin profiling of Drosophila CNS subpopulations identifies active transcriptional enhancers. Pearson JC; McKay DJ; Lieb JD; Crews ST Development; 2016 Oct; 143(20):3723-3732. PubMed ID: 27802137 [TBL] [Abstract][Full Text] [Related]
20. Temporal inhibition of chromatin looping and enhancer accessibility during neuronal remodeling. Chen D; McManus CE; Radmanesh B; Matzat LH; Lei EP Nat Commun; 2021 Nov; 12(1):6366. PubMed ID: 34737269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]