BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 32431217)

  • 1. Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (M
    Kumar V; Dhanjal JK; Kaul SC; Wadhwa R; Sundar D
    J Biomol Struct Dyn; 2021 Jul; 39(11):3842-3854. PubMed ID: 32431217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells.
    Kumar V; Dhanjal JK; Bhargava P; Kaul A; Wang J; Zhang H; Kaul SC; Wadhwa R; Sundar D
    J Biomol Struct Dyn; 2022 Jan; 40(1):1-13. PubMed ID: 32469279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-COVID-19 Potential of Withaferin-A and Caffeic Acid Phenethyl Ester.
    Kumar V; Sari AN; Gupta D; Ishida Y; Terao K; Kaul SC; Vrati S; Sundar D; Wadhwa R
    Curr Top Med Chem; 2024; 24(9):830-842. PubMed ID: 38279743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Insights into the Potential of Withaferin-A, Withanone and Caffeic Acid Phenethyl Ester for Treatment of Aberrant-EGFR Driven Lung Cancers.
    Malik V; Kumar V; Kaul SC; Wadhwa R; Sundar D
    Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33530424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Withaferin-A, Withanone, and Caffeic Acid Phenethyl Ester on DNA Methyltransferases: Potential in Epigenetic Cancer Therapy.
    Kumar V; Dhanjal JK; Sari AN; Khurana M; Kaul SC; Wadhwa R; Sundar D
    Curr Top Med Chem; 2024; 24(4):379-391. PubMed ID: 37496252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of bioactive molecule from
    Tripathi MK; Singh P; Sharma S; Singh TP; Ethayathulla AS; Kaur P
    J Biomol Struct Dyn; 2021 Sep; 39(15):5668-5681. PubMed ID: 32643552
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Maurya AK; Mishra N
    J Biomol Struct Dyn; 2021 Nov; 39(18):7306-7321. PubMed ID: 32835632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possibility of HIV-1 protease inhibitors-clinical trial drugs as repurposed drugs for SARS-CoV-2 main protease: a molecular docking, molecular dynamics and binding free energy simulation study.
    Ancy I; Sivanandam M; Kumaradhas P
    J Biomol Struct Dyn; 2021 Sep; 39(15):5368-5375. PubMed ID: 32627689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target.
    Kundu D; Selvaraj C; Singh SK; Dubey VK
    J Biomol Struct Dyn; 2021 Jun; 39(9):3428-3434. PubMed ID: 32362243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of NO donor furoxan as SARS-CoV-2 main protease (M
    Al-Sehemi AG; Pannipara M; Parulekar RS; Patil O; Choudhari PB; Bhatia MS; Zubaidha PK; Tamboli Y
    J Biomol Struct Dyn; 2021 Sep; 39(15):5804-5818. PubMed ID: 32643550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding potent inhibitors for COVID-19 main protease (M
    Motiwale M; Yadav NS; Kumar S; Kushwaha T; Choudhir G; Sharma S; Singour PK
    J Biomol Struct Dyn; 2022 Mar; 40(4):1534-1545. PubMed ID: 33030102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Compounds as Inhibitors of SARS-CoV-2 Main Protease (3CLpro): A Molecular Docking and Simulation Approach to Combat COVID-19.
    Rehman MT; AlAjmi MF; Hussain A
    Curr Pharm Des; 2021; 27(33):3577-3589. PubMed ID: 33200697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-silico drug repurposing for targeting SARS-CoV-2 main protease (M
    Sharma S; Deep S
    J Biomol Struct Dyn; 2022 Apr; 40(7):3003-3010. PubMed ID: 33179568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Binding Mechanism and Pharmacology Comparative Analysis of Noscapine for Repurposing against SARS-CoV-2 Protease.
    Kumar N; Sood D; van der Spek PJ; Sharma HS; Chandra R
    J Proteome Res; 2020 Nov; 19(11):4678-4689. PubMed ID: 32786685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization Rules for SARS-CoV-2 M
    Stoddard SV; Stoddard SD; Oelkers BK; Fitts K; Whalum K; Whalum K; Hemphill AD; Manikonda J; Martinez LM; Riley EG; Roof CM; Sarwar N; Thomas DM; Ulmer E; Wallace FE; Pandey P; Roy S
    Viruses; 2020 Aug; 12(9):. PubMed ID: 32859008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study.
    Das S; Sarmah S; Lyndem S; Singha Roy A
    J Biomol Struct Dyn; 2021 Jun; 39(9):3347-3357. PubMed ID: 32362245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational basis of SARS-CoV 2 main protease inhibition: an insight from molecular dynamics simulation based findings.
    Avti P; Chauhan A; Shekhar N; Prajapat M; Sarma P; Kaur H; Bhattacharyya A; Kumar S; Prakash A; Sharma S; Medhi B
    J Biomol Struct Dyn; 2022; 40(19):8894-8904. PubMed ID: 33998950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors.
    Ibrahim MAA; Abdelrahman AHM; Hussien TA; Badr EAA; Mohamed TA; El-Seedi HR; Pare PW; Efferth T; Hegazy MF
    Comput Biol Med; 2020 Nov; 126():104046. PubMed ID: 33065388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational discovery of small drug-like compounds as potential inhibitors of SARS-CoV-2 main protease.
    Andrianov AM; Kornoushenko YV; Karpenko AD; Bosko IP; Tuzikov AV
    J Biomol Struct Dyn; 2021 Sep; 39(15):5779-5791. PubMed ID: 32662333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promising inhibitors of main protease of novel corona virus to prevent the spread of COVID-19 using docking and molecular dynamics simulation.
    Kumar D; Kumari K; Vishvakarma VK; Jayaraj A; Kumar D; Ramappa VK; Patel R; Kumar V; Dass SK; Chandra R; Singh P
    J Biomol Struct Dyn; 2021 Aug; 39(13):4671-4685. PubMed ID: 32567995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.