BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32431679)

  • 1. Stress Tolerance of Yeasts Dominating Reverse Osmosis Membranes for Whey Water Treatment.
    Vitzilaiou E; Aunsbjerg SD; Mahyudin NA; Knøchel S
    Front Microbiol; 2020; 11():816. PubMed ID: 32431679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feed substrates influence biofilm formation on reverse osmosis membranes and their cleaning efficiency.
    Marka S; Anand S
    J Dairy Sci; 2018 Jan; 101(1):84-95. PubMed ID: 29103718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.
    Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK
    Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifouling potential of enzymes applied to reverse osmosis membranes.
    Khani M; Hansen MF; Knøchel S; Rasekh B; Ghasemipanah K; Zamir SM; Nosrati M; Burmølle M
    Biofilm; 2023 Dec; 5():100119. PubMed ID: 37131492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of biofouling on reverse osmosis membrane surfaces by germicidal ultraviolet light side-emitting optical fibers.
    Rho H; Yu P; Zhao Z; Lee CS; Chon K; Perreault F; Alvarez PJJ; Amy G; Westerhoff P
    Water Res; 2022 Oct; 224():119094. PubMed ID: 36115159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of supercritical CO₂ treatment for controlling biofouling in the reverse osmosis process.
    Mun S; Baek Y; Kim C; Lee YW; Yoon J
    Biofouling; 2012; 28(6):627-33. PubMed ID: 22726211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofouling of reverse osmosis membranes: effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances.
    Al Ashhab A; Sweity A; Bayramoglu B; Herzberg M; Gillor O
    Biofouling; 2017 May; 33(5):397-409. PubMed ID: 28468513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: microbial community composition.
    Al Ashhab A; Herzberg M; Gillor O
    Water Res; 2014 Mar; 50():341-9. PubMed ID: 24231030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ultraviolet disinfection on the fouling of reverse osmosis membranes for municipal wastewater reclamation.
    Wu YH; Chen Z; Li X; Wang YH; Liu B; Chen GQ; Luo LW; Wang HB; Tong X; Bai Y; Xu YQ; Ikuno N; Li CF; Zhang HY; Hu HY
    Water Res; 2021 May; 195():116995. PubMed ID: 33721675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell aggregations in yeasts and their applications.
    Vallejo JA; Sánchez-Pérez A; Martínez JP; Villa TG
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2305-18. PubMed ID: 23397484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofouling and microbial communities in membrane distillation and reverse osmosis.
    Zodrow KR; Bar-Zeev E; Giannetto MJ; Elimelech M
    Environ Sci Technol; 2014 Nov; 48(22):13155-64. PubMed ID: 25295386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: Lab-scale and full-scale studies.
    Park JW; Lee YJ; Meyer AS; Douterelo I; Maeng SK
    Water Res; 2018 Nov; 144():36-45. PubMed ID: 30014977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality.
    Park SK; Hu JY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(8):968-77. PubMed ID: 20512722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane.
    Jeong S; Cho K; Jeong D; Lee S; Leiknes T; Vigneswaran S; Bae H
    Water Res; 2017 Nov; 124():227-237. PubMed ID: 28759795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of a typical clean-in-place protocol against in vitro membrane biofilms.
    Singh D; Anand S
    J Dairy Sci; 2022 Nov; 105(12):9417-9425. PubMed ID: 36241430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlorination caused a shift in marine biofilm niches on microfiltration/ultrafiltration and reverse osmosis membranes and UV irradiation effectively inactivated a chlorine-resistant bacterium.
    Cho K; Jeong D; Lee S; Bae H
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):7183-7194. PubMed ID: 29948119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm formation characteristics of bacterial isolates retrieved from a reverse osmosis membrane.
    Pang CM; Hong P; Guo H; Liu WT
    Environ Sci Technol; 2005 Oct; 39(19):7541-50. PubMed ID: 16245826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic characterization of the distribution, biofilm-forming potential and the resistance of the biofilms to the CIP processes of the bacteria in a milk powder processing factory.
    Zou M; Liu D
    Food Res Int; 2018 Nov; 113():316-326. PubMed ID: 30195526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-destructive approaches for assessing biofouling of household reverse osmosis membranes.
    Markwardt SD; Ronnie N; Camper AK
    Biofouling; 2018 Aug; 34(7):740-752. PubMed ID: 30270657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multispecies biofilms on reverse osmosis membrane dictate the function and characteristics of the bacterial communities rather than their structure.
    Ran N; Sorek G; Stein N; Sharon-Gojman R; Herzberg M; Gillor O
    Environ Res; 2023 Aug; 231(Pt 1):115999. PubMed ID: 37105294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.