These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32431687)

  • 1. Disruption of a C69-Family Cysteine Dipeptidase Gene Enhances Heat Shock and UV-B Tolerances in
    Li J; Guo M; Cao Y; Xia Y
    Front Microbiol; 2020; 11():849. PubMed ID: 32431687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ENA ATPase, MaENA1, of Metarhizium acridum influences the Na(+)-, thermo- and UV-tolerances of conidia and is involved in multiple mechanisms of stress tolerance.
    Ma Q; Jin K; Peng G; Xia Y
    Fungal Genet Biol; 2015 Oct; 83():68-77. PubMed ID: 26325214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum.
    Du Y; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5611-5623. PubMed ID: 29713793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The protein phosphatase gene MaPpt1 acts as a programmer of microcycle conidiation and a negative regulator of UV-B tolerance in Metarhizium acridum.
    Zhang J; Wang Z; Keyhani NO; Peng G; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1351-1362. PubMed ID: 30610282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MaSln1, a Conserved Histidine Protein Kinase, Contributes to Conidiation Pattern Shift Independent of the MAPK Pathway in
    Wen Z; Xia Y; Jin K
    Microbiol Spectr; 2022 Apr; 10(2):e0205121. PubMed ID: 35343772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MaAts, an Alkylsulfatase, Contributes to Fungal Tolerances against UV-B Irradiation and Heat-Shock in
    Song L; Xue X; Wang S; Li J; Jin K; Xia Y
    J Fungi (Basel); 2022 Mar; 8(3):. PubMed ID: 35330272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dipeptidase PEPDA Is Required for the Conidiation Pattern Shift in Metarhizium acridum.
    Li J; Su X; Cao Y; Xia Y
    Appl Environ Microbiol; 2021 Sep; 87(19):e0090821. PubMed ID: 34288712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phosphatase gene MaCdc14 negatively regulates UV-B tolerance by mediating the transcription of melanin synthesis-related genes and contributes to conidiation in Metarhizium acridum.
    Gao P; Jin K; Xia Y
    Curr Genet; 2020 Feb; 66(1):141-153. PubMed ID: 31256233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MaCts1, an Endochitinase, Is Involved in Conidial Germination, Conidial Yield, Stress Tolerances and Microcycle Conidiation in
    Zou Y; Li C; Wang S; Xia Y; Jin K
    Biology (Basel); 2022 Nov; 11(12):. PubMed ID: 36552240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The polyubiquitin gene
    Wang Z; Zhu H; Cheng Y; Jiang Y; Li Y; Huang B
    Genes (Basel); 2019 May; 10(6):. PubMed ID: 31146457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum.
    Wei Q; Du Y; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MaOpy2, a Transmembrane Protein, Is Involved in Stress Tolerances and Pathogenicity and Negatively Regulates Conidial Yield by Shifting the Conidiation Pattern in
    Wen Z; Fan Y; Xia Y; Jin K
    J Fungi (Basel); 2022 May; 8(6):. PubMed ID: 35736070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transmembrane protein MaSho1 negatively regulates conidial yield by shifting the conidiation pattern in Metarhizium acridum.
    Zhao T; Wen Z; Xia Y; Jin K
    Appl Microbiol Biotechnol; 2020 May; 104(9):4005-4015. PubMed ID: 32170386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-terminal zinc fingers of MaNCP1 contribute to growth, stress tolerance, and virulence in Metarhizium acridum.
    Li C; Xia Y; Jin K
    Int J Biol Macromol; 2022 Sep; 216():426-436. PubMed ID: 35809667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adenylate cyclase gene MaAC is required for virulence and multi-stress tolerance of Metarhizium acridum.
    Liu S; Peng G; Xia Y
    BMC Microbiol; 2012 Aug; 12():163. PubMed ID: 22853879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The homeobox gene MaH1 governs microcycle conidiation for increased conidial yield by mediating transcription of conidiation pattern shift-related genes in Metarhizium acridum.
    Gao P; Li M; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2251-2262. PubMed ID: 30631896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetracarboxylic acid transporter regulates growth, conidiation, and carbon utilization in Metarhizium acridum.
    Luo Y; Yan X; Xia Y; Cao Y
    Appl Microbiol Biotechnol; 2023 May; 107(9):2969-2982. PubMed ID: 36941435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MaPmt4, a protein O-mannosyltransferase, contributes to cell wall integrity, stress tolerance and virulence in Metarhizium acridum.
    Zhao T; Tian H; Xia Y; Jin K
    Curr Genet; 2019 Aug; 65(4):1025-1040. PubMed ID: 30911768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription Factor
    Su X; Liu H; Xia Y; Cao Y
    J Fungi (Basel); 2022 Jun; 8(6):. PubMed ID: 35736077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence.
    Zhang J; Jiang H; Du Y; Keyhani NO; Xia Y; Jin K
    PLoS Pathog; 2019 Aug; 15(8):e1007964. PubMed ID: 31461507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.