BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32431779)

  • 1. High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors.
    Antonelli J; Parmigiani G; Dominici F
    Bayesian Anal; 2019 Sep; 14(3):805-828. PubMed ID: 32431779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable selection and estimation in causal inference using Bayesian spike and slab priors.
    Koch B; Vock DM; Wolfson J; Vock LB
    Stat Methods Med Res; 2020 Sep; 29(9):2445-2469. PubMed ID: 31939336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doubly robust matching estimators for high dimensional confounding adjustment.
    Antonelli J; Cefalu M; Palmer N; Agniel D
    Biometrics; 2018 Dec; 74(4):1171-1179. PubMed ID: 29750844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ROBUST AND EFFICIENT APPROACH TO CAUSAL INFERENCE BASED ON SPARSE SUFFICIENT DIMENSION REDUCTION.
    Ma S; Zhu L; Zhang Z; Tsai CL; Carroll RJ
    Ann Stat; 2019 Jun; 47(3):1505-1535. PubMed ID: 31231143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian penalty methods for evaluating measurement invariance in moderated nonlinear factor analysis.
    Brandt H; Chen SM; Bauer DJ
    Psychol Methods; 2023 Jun; ():. PubMed ID: 37289539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian semiparametric multiple shrinkage.
    Maclehose RF; Dunson DB
    Biometrics; 2010 Jun; 66(2):455-62. PubMed ID: 19508244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of confounder selection and adjustment methods for estimating causal effects using large healthcare databases.
    Benasseur I; Talbot D; Durand M; Holbrook A; Matteau A; Potter BJ; Renoux C; Schnitzer ME; Tarride JÉ; Guertin JR
    Pharmacoepidemiol Drug Saf; 2022 Apr; 31(4):424-433. PubMed ID: 34953160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian Joint Spike-and-Slab Graphical Lasso.
    Richard Li Z; McCormick TH; Clark SJ
    Proc Mach Learn Res; 2019 Jun; 97():3877-3885. PubMed ID: 33521648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NON-LOCAL PRIORS FOR HIGH-DIMENSIONAL ESTIMATION.
    Rossell D; Telesca D
    J Am Stat Assoc; 2017; 112(517):254-265. PubMed ID: 29881129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
    Li Y; Lee Y; Port FK; Robinson BM
    Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DOUBLY DEBIASED LASSO: HIGH-DIMENSIONAL INFERENCE UNDER HIDDEN CONFOUNDING.
    Guo Z; Ćevid D; Bühlmann P
    Ann Stat; 2022 Jun; 50(3):1320-1347. PubMed ID: 35958884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian nonparametric adjustment of confounding.
    Kim C; Tec M; Zigler C
    Biometrics; 2023 Dec; 79(4):3252-3265. PubMed ID: 36718599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint mixed-effects models for causal inference with longitudinal data.
    Shardell M; Ferrucci L
    Stat Med; 2018 Feb; 37(5):829-846. PubMed ID: 29205454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dirichlet-Laplace priors for optimal shrinkage.
    Bhattacharya A; Pati D; Pillai NS; Dunson DB
    J Am Stat Assoc; 2015 Dec; 110(512):1479-1490. PubMed ID: 27019543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing causal treatment effect estimation when using large observational datasets.
    John ER; Abrams KR; Brightling CE; Sheehan NA
    BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A causal exposure response function with local adjustment for confounding: Estimating health effects of exposure to low levels of ambient fine particulate matter.
    Papadogeorgou G; Dominici F
    Ann Appl Stat; 2020 Jun; 14(2):850-871. PubMed ID: 33649709
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.