These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32431909)

  • 1. Morphological diversification has led to inter-specific variation in elastic wing deformation during flight in scarab beetles.
    Meresman Y; Husak JF; Ben-Shlomo R; Ribak G
    R Soc Open Sci; 2020 Apr; 7(4):200277. PubMed ID: 32431909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic wing deformations mitigate flapping asymmetry during manoeuvres in rose chafers (
    Meresman Y; Ribak G
    J Exp Biol; 2020 Dec; 223(Pt 24):. PubMed ID: 33168594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allometry of wing twist and camber in a flower chafer during free flight: How do wing deformations scale with body size?
    Meresman Y; Ribak G
    R Soc Open Sci; 2017 Oct; 4(10):171152. PubMed ID: 29134103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic deformation and energy loss of flapping fly wings.
    Lehmann FO; Gorb S; Nasir N; Schützner P
    J Exp Biol; 2011 Sep; 214(Pt 17):2949-61. PubMed ID: 21832138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects.
    Phan HV; Park HC
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30111558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae).
    Bai M; McCullough E; Song KQ; Liu WG; Yang XK
    PLoS One; 2011; 6(6):e21600. PubMed ID: 21738727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2999-3006. PubMed ID: 12878668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wing flexibility reduces the energetic requirements of insect flight.
    Reid HE; Schwab RK; Maxcer M; Peterson RKD; Johnson EL; Jankauski M
    Bioinspir Biomim; 2019 Jul; 14(5):056007. PubMed ID: 31252414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How wing compliance drives the efficiency of self-propelled flapping flyers.
    Thiria B; Godoy-Diana R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):015303. PubMed ID: 20866680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.
    Wu P; Stanford BK; Sällström E; Ukeiley L; Ifju PG
    Bioinspir Biomim; 2011 Mar; 6(1):016009. PubMed ID: 21339627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Functions of Phasic Wing-Tip Folding on Flapping-Wing Aerodynamics.
    Li Y; Li K; Fu F; Li Y; Li B
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.
    Shang JK; Combes SA; Finio BM; Wood RJ
    Bioinspir Biomim; 2009 Sep; 4(3):036002. PubMed ID: 19713572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight.
    Percin M; van Oudheusden BW; de Croon GC; Remes B
    Bioinspir Biomim; 2016 May; 11(3):036014. PubMed ID: 27194392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local deformation and stiffness distribution in fly wings.
    Wehmann HN; Heepe L; Gorb SN; Engels T; Lehmann FO
    Biol Open; 2019 Jan; 8(1):. PubMed ID: 30642916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vein-Membrane Interaction in Cambering of Flapping Insect Wings.
    Ishihara D; Onishi M; Sugikawa K
    Biomimetics (Basel); 2023 Nov; 8(8):. PubMed ID: 38132510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of collision recovery in flying beetles and flapping-wing robots.
    Phan HV; Park HC
    Science; 2020 Dec; 370(6521):1214-1219. PubMed ID: 33273101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.
    Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS
    Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.