These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 32432039)

  • 1. Deregulation of Adaptive T Cell Immunity in Multiple Myeloma: Insights Into Mechanisms and Therapeutic Opportunities.
    Leblay N; Maity R; Hasan F; Neri P
    Front Oncol; 2020; 10():636. PubMed ID: 32432039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy.
    Chung C
    Pharmacotherapy; 2017 Jan; 37(1):129-143. PubMed ID: 27870103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma.
    Swamydas M; Murphy EV; Ignatz-Hoover JJ; Malek E; Driscoll JJ
    J Hematol Oncol; 2022 Feb; 15(1):17. PubMed ID: 35172851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance.
    Ho M; Goh CY; Patel A; Staunton S; O'Connor R; Godeau M; Bianchi G
    Clin Lymphoma Myeloma Leuk; 2020 Oct; 20(10):e752-e768. PubMed ID: 32651110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma.
    Podar K; Jager D
    Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1.
    Tai YT; Cho SF; Anderson KC
    Front Immunol; 2018; 9():1822. PubMed ID: 30147691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Immune Microenvironment in Multiple Myeloma: Friend or Foe?
    Lopes R; Caetano J; Ferreira B; Barahona F; Carneiro EA; João C
    Cancers (Basel); 2021 Feb; 13(4):. PubMed ID: 33562441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the Immune Response in Disease Progression and Therapy in Multiple Myeloma.
    Lee SJ; Borrello I
    Cancer Treat Res; 2016; 169():207-225. PubMed ID: 27696265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutics to harness the immune microenvironment in multiple myeloma.
    Ignatz-Hoover JJ; Driscoll JJ
    Cancer Drug Resist; 2022; 5(3):647-661. PubMed ID: 36176763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Checkpoint inhibition in the treatment of multiple myeloma: A way to boost innate-like T cell anti-tumor function?
    Venken K; Favreau M; Gaublomme D; Menu E; Vanderkerken K; Elewaut D
    Mol Immunol; 2018 Sep; 101():521-526. PubMed ID: 30153633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actors on the Scene: Immune Cells in the Myeloma Niche.
    Leone P; Solimando AG; Malerba E; Fasano R; Buonavoglia A; Pappagallo F; De Re V; Argentiero A; Silvestris N; Vacca A; Racanelli V
    Front Oncol; 2020; 10():599098. PubMed ID: 33194767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different evasion strategies in multiple myeloma.
    Wang C; Wang W; Wang M; Deng J; Sun C; Hu Y; Luo S
    Front Immunol; 2024; 15():1346211. PubMed ID: 38464531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing the Immune System Against Multiple Myeloma: Challenges and Opportunities.
    Yamamoto L; Amodio N; Gulla A; Anderson KC
    Front Oncol; 2020; 10():606368. PubMed ID: 33585226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Immune Cells and Immunotherapy in Multiple Myeloma.
    Radhakrishnan V; Golla U; Kudva AK
    Life (Basel); 2024 Apr; 14(4):. PubMed ID: 38672732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site.
    Zelle-Rieser C; Thangavadivel S; Biedermann R; Brunner A; Stoitzner P; Willenbacher E; Greil R; Jöhrer K
    J Hematol Oncol; 2016 Nov; 9(1):116. PubMed ID: 27809856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges for Immunotherapy in Multiple Myeloma: Bone Marrow Microenvironment-Mediated Immune Suppression and Immune Resistance.
    Holthof LC; Mutis T
    Cancers (Basel); 2020 Apr; 12(4):. PubMed ID: 32316450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myeloid-derived suppressor cells: The green light for myeloma immune escape.
    Malek E; de Lima M; Letterio JJ; Kim BG; Finke JH; Driscoll JJ; Giralt SA
    Blood Rev; 2016 Sep; 30(5):341-8. PubMed ID: 27132116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Myeloma and the Immune Microenvironment.
    Kawano Y; Roccaro AM; Ghobrial IM; Azzi J
    Curr Cancer Drug Targets; 2017; 17(9):806-818. PubMed ID: 28201978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The immune microenvironment of myeloma.
    Noonan K; Borrello I
    Cancer Microenviron; 2011 Dec; 4(3):313-23. PubMed ID: 21866321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of immune evasion in breast cancer.
    Bates JP; Derakhshandeh R; Jones L; Webb TJ
    BMC Cancer; 2018 May; 18(1):556. PubMed ID: 29751789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.