These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32432039)

  • 21. Vγ9Vδ2 T Cells in the Bone Marrow of Myeloma Patients: A Paradigm of Microenvironment-Induced Immune Suppression.
    Castella B; Foglietta M; Riganti C; Massaia M
    Front Immunol; 2018; 9():1492. PubMed ID: 30013559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunotherapy for Multiple Myeloma, Past, Present, and Future: Monoclonal Antibodies, Vaccines, and Cellular Therapies.
    Karp Leaf R; Cho HJ; Avigan D
    Curr Hematol Malig Rep; 2015 Dec; 10(4):395-404. PubMed ID: 26338470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunodeficiency and immunotherapy in multiple myeloma.
    Pratt G; Goodyear O; Moss P
    Br J Haematol; 2007 Sep; 138(5):563-79. PubMed ID: 17686051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Is immunotherapy here to stay in multiple myeloma?
    Rodríguez-Otero P; Paiva B; Engelhardt M; Prósper F; San Miguel JF
    Haematologica; 2017 Mar; 102(3):423-432. PubMed ID: 28082344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the role and significance of Fas (Apo-1/CD95) ligand (FasL) expression in immune privileged tissues and cancer cells using multiple myeloma as a model.
    Greil R; Egle A; Villunger A
    Leuk Lymphoma; 1998 Nov; 31(5-6):477-90. PubMed ID: 9922038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of the bone marrow microenvironment on multiple myeloma (Review).
    Hou J; Wei R; Qian J; Wang R; Fan Z; Gu C; Yang Y
    Oncol Rep; 2019 Oct; 42(4):1272-1282. PubMed ID: 31524246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BCMA-Targeting Therapy: Driving a New Era of Immunotherapy in Multiple Myeloma.
    Cho SF; Lin L; Xing L; Li Y; Yu T; Anderson KC; Tai YT
    Cancers (Basel); 2020 Jun; 12(6):. PubMed ID: 32516895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coinhibitory Molecule PD-1 as a Therapeutic Target in the Microenvironment of Multiple Myeloma.
    Atanackovic D; Luetkens T; Radhakrishnan S; Kroger N
    Curr Cancer Drug Targets; 2017; 17(9):839-845. PubMed ID: 28875836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies.
    Ye B; Stary CM; Gao Q; Wang Q; Zeng Z; Jian Z; Gu L; Xiong X
    J Immunol Res; 2017; 2017():5210459. PubMed ID: 28116322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The malignant clone and the bone-marrow environment.
    Podar K; Richardson PG; Hideshima T; Chauhan D; Anderson KC
    Best Pract Res Clin Haematol; 2007 Dec; 20(4):597-612. PubMed ID: 18070708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma.
    Manier S; Kawano Y; Bianchi G; Roccaro AM; Ghobrial IM
    Curr Opin Hematol; 2016 Jul; 23(4):426-33. PubMed ID: 27101529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immune microenvironment characteristics in multiple myeloma progression from transcriptome profiling.
    Wang J; Hu Y; Hamidi H; Dos Santos C; Zhang J; Punnoose E; Li W
    Front Oncol; 2022; 12():948548. PubMed ID: 36033464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New Strategies in Multiple Myeloma: Immunotherapy as a Novel Approach to Treat Patients with Multiple Myeloma.
    Neri P; Bahlis NJ; Lonial S
    Clin Cancer Res; 2016 Dec; 22(24):5959-5965. PubMed ID: 27797968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel Immunotherapies for Multiple Myeloma.
    D'Agostino M; Boccadoro M; Smith EL
    Curr Hematol Malig Rep; 2017 Aug; 12(4):344-357. PubMed ID: 28819882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunopathogenesis and immunotherapy of multiple myeloma.
    Tamura H
    Int J Hematol; 2018 Mar; 107(3):278-285. PubMed ID: 29368256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving cancer immunotherapy by targeting tumor-induced immune suppression.
    Stewart TJ; Smyth MJ
    Cancer Metastasis Rev; 2011 Mar; 30(1):125-40. PubMed ID: 21249424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immune therapy in multiple myeloma.
    Luptakova K; Avigan D
    Clin Adv Hematol Oncol; 2015 Nov; 13(11):767-75. PubMed ID: 27058703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immune impairments in multiple myeloma bone marrow mesenchymal stromal cells.
    André T; Najar M; Stamatopoulos B; Pieters K; Pradier O; Bron D; Meuleman N; Lagneaux L
    Cancer Immunol Immunother; 2015 Feb; 64(2):213-24. PubMed ID: 25341809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanisms of HLA class I-mediated immune evasion of human tumors and their role in resistance to immunotherapies.
    Seliger B
    HLA; 2016 Nov; 88(5):213-220. PubMed ID: 27659281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunotherapeutic approaches for hematologic malignancies.
    Caligiuri MA; Velardi A; Scheinberg DA; Borrello IM
    Hematology Am Soc Hematol Educ Program; 2004; ():337-53. PubMed ID: 15561691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.