These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 32432104)

  • 41. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.
    Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds-Present and Future Strain Construction Strategies.
    Averesch NJH; Krömer JO
    Front Bioeng Biotechnol; 2018; 6():32. PubMed ID: 29632862
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biobased organic acids production by metabolically engineered microorganisms.
    Chen Y; Nielsen J
    Curr Opin Biotechnol; 2016 Feb; 37():165-172. PubMed ID: 26748037
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strain engineering for microbial production of value-added chemicals and fuels from glycerol.
    Westbrook AW; Miscevic D; Kilpatrick S; Bruder MR; Moo-Young M; Chou CP
    Biotechnol Adv; 2019; 37(4):538-568. PubMed ID: 30339871
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Advances in engineering microbial biosynthesis of aromatic compounds and related compounds.
    Dickey RM; Forti AM; Kunjapur AM
    Bioresour Bioprocess; 2021 Sep; 8(1):91. PubMed ID: 38650203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.
    Gottardi M; Reifenrath M; Boles E; Tripp J
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Systems Metabolic Engineering Strategies for Non-Natural Microbial Polyester Production.
    Lee Y; Cho IJ; Choi SY; Lee SY
    Biotechnol J; 2019 Sep; 14(9):e1800426. PubMed ID: 30851138
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbial conversion of biomass into bio-based polymers.
    Kawaguchi H; Ogino C; Kondo A
    Bioresour Technol; 2017 Dec; 245(Pt B):1664-1673. PubMed ID: 28688739
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae.
    Tippmann S; Chen Y; Siewers V; Nielsen J
    Biotechnol J; 2013 Dec; 8(12):1435-44. PubMed ID: 24227704
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic engineering for microbial production of aromatic amino acids and derived compounds.
    Bongaerts J; Krämer M; Müller U; Raeven L; Wubbolts M
    Metab Eng; 2001 Oct; 3(4):289-300. PubMed ID: 11676565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.
    Liu X; Ding W; Jiang H
    Microb Cell Fact; 2017 Jul; 16(1):125. PubMed ID: 28724386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives.
    Francois JM; Alkim C; Morin N
    Biotechnol Biofuels; 2020; 13():118. PubMed ID: 32670405
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of a switchable synthetic Escherichia coli for aromatic amino acids by a tunable switch.
    Liu X; Niu H; Huang Z; Li Q; Gu P
    J Ind Microbiol Biotechnol; 2020 Feb; 47(2):233-242. PubMed ID: 31989326
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthetic Biology Applied to Carbon Conservative and Carbon Dioxide Recycling Pathways.
    François JM; Lachaux C; Morin N
    Front Bioeng Biotechnol; 2019; 7():446. PubMed ID: 31998710
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anaerobic Degradation of Syringic Acid by an Adapted Strain of Rhodopseudomonas palustris.
    Oshlag JZ; Ma Y; Morse K; Burger BT; Lemke RA; Karlen SD; Myers KS; Donohue TJ; Noguera DR
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31732577
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products.
    Heider SA; Wendisch VF
    Biotechnol J; 2015 Aug; 10(8):1170-84. PubMed ID: 26216246
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial remediation of nitro-aromatic compounds: an overview.
    Kulkarni M; Chaudhari A
    J Environ Manage; 2007 Oct; 85(2):496-512. PubMed ID: 17703873
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic Engineering of Microorganisms for the Production of Flavonoids.
    Sheng H; Sun X; Yan Y; Yuan Q; Wang J; Shen X
    Front Bioeng Biotechnol; 2020; 8():589069. PubMed ID: 33117787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects.
    Cao L; Yu IKM; Liu Y; Ruan X; Tsang DCW; Hunt AJ; Ok YS; Song H; Zhang S
    Bioresour Technol; 2018 Dec; 269():465-475. PubMed ID: 30146182
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthetic biology promotes the capture of CO2 to produce fatty acid derivatives in microbial cell factories.
    Liu X; Luo H; Yu D; Tan J; Yuan J; Li H
    Bioresour Bioprocess; 2022 Dec; 9(1):124. PubMed ID: 38647643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.