These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32432282)

  • 1. Determining the coordination environment and electronic structure of polymer-encapsulated cobalt phthalocyanine under electrocatalytic CO
    Liu Y; Deb A; Leung KY; Nie W; Dean WS; Penner-Hahn JE; McCrory CCL
    Dalton Trans; 2020 Nov; 49(45):16329-16339. PubMed ID: 32432282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer coordination promotes selective CO
    Kramer WW; McCrory CCL
    Chem Sci; 2016 Apr; 7(4):2506-2515. PubMed ID: 28660020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Considering the Influence of Polymer-Catalyst Interactions on the Chemical Microenvironment of Electrocatalysts for the CO
    Soucy TL; Dean WS; Zhou J; Rivera Cruz KE; McCrory CCL
    Acc Chem Res; 2022 Feb; 55(3):252-261. PubMed ID: 35044745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitigating Cobalt Phthalocyanine Aggregation in Electrocatalyst Films through Codeposition with an Axially Coordinating Polymer.
    Dean WS; Soucy TL; Rivera-Cruz KE; Filien LL; Terry BD; McCrory CCL
    Small; 2024 Jun; ():e2402293. PubMed ID: 38923726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Sites of Cobalt Phthalocyanine in Electrocatalytic CO
    Rooney CL; Lyons M; Wu Y; Hu G; Wang M; Choi C; Gao Y; Chang CW; Brudvig GW; Feng Z; Wang H
    Angew Chem Int Ed Engl; 2024 Jan; 63(2):e202310623. PubMed ID: 37820079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure changes in cobalt phthalocyanine due to nanotube encapsulation probed using resonant inelastic X-ray scattering.
    Swarbrick JC; Weng TC; Schulte K; Khlobystov AN; Glatzel P
    Phys Chem Chem Phys; 2010 Sep; 12(33):9693-9. PubMed ID: 20539888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating the mechanism of electrocatalytic CO
    Liu Y; McCrory CCL
    Nat Commun; 2019 Apr; 10(1):1683. PubMed ID: 30976003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translating Catalyst-Polymer Composites from Liquid to Gas-Fed CO
    Yao L; Yin C; Rivera-Cruz KE; McCrory CCL; Singh N
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31438-31448. PubMed ID: 37348071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailored Local Electronic Environment of Co-N
    Huang M; Chen B; Zhang H; Jin Y; Zhi Q; Yang T; Wang K; Jiang J
    Small Methods; 2024 Apr; ():e2301652. PubMed ID: 38659342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Scanning Tunneling Microscopy of Cobalt-Phthalocyanine-Catalyzed CO
    Wang X; Cai ZF; Wang YQ; Feng YC; Yan HJ; Wang D; Wan LJ
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):16098-16103. PubMed ID: 32495960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Regulation of Coupled Phthalocyanine-Porphyrin Covalent Organic Frameworks to Highly Active and Selective Electrocatalytic CO
    Yuan J; Chen S; Zhang Y; Li R; Zhang J; Peng T
    Adv Mater; 2022 Jul; 34(30):e2203139. PubMed ID: 35654012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the factors governing the water oxidation reaction pathway of mononuclear and binuclear cobalt phthalocyanine catalysts.
    Huang Q; Chen J; Luan P; Ding C; Li C
    Chem Sci; 2022 Aug; 13(30):8797-8803. PubMed ID: 35975146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing effect of cobalt phthalocyanine dispersion on electrocatalytic reduction of CO
    Guo T; Wang X; Xing X; Fu Z; Ma C; Bedane AH; Kong L
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):122755-122773. PubMed ID: 37978121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ X-ray absorption spectroelectrochemical study of hydroxocobalamin.
    Giorgetti M; Ascone I; Berrettoni M; Conti P; Zamponi S; Marassi R
    J Biol Inorg Chem; 2000 Apr; 5(2):156-66. PubMed ID: 10819461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing CO
    Lin L; Liu T; Xiao J; Li H; Wei P; Gao D; Nan B; Si R; Wang G; Bao X
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22408-22413. PubMed ID: 32886835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of Highly Reactive Cobalt Phthalocyanine via Electrochemical Activation for Enhanced CO
    Wu X; Zhao JY; Sun JW; Li WJ; Yuan HY; Liu PF; Dai S; Yang HG
    Small; 2023 Jun; 19(23):e2207037. PubMed ID: 36879480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Complexes with Cobalt(II) Phthalocyanine Disodium Disulfonate.
    Kasyanenko NA; Tikhomirov RA; Bakulev VM; Demidov VN; Chikhirzhina EV; Moroshkina EB
    ACS Omega; 2019 Oct; 4(16):16935-16942. PubMed ID: 31646240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the Hydroxyl Density of MXene to Regulate the Electrochemical Performance of Anchored Cobalt Phthalocyanine for CO
    Yu F; Zhou Z; You Y; Zhan J; Yao T; Zhang LH
    ACS Appl Mater Interfaces; 2023 May; 15(20):24346-24353. PubMed ID: 37184859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of Cobalt Phthalocyanine, Acetylene Black and Cu
    Liu J; Yu K; Qiao Z; Zhu Q; Zhang H; Jiang J
    ChemSusChem; 2023 Oct; 16(19):e202300601. PubMed ID: 37488969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spatial distribution of cobalt phthalocyanine and copper nanocubes controls the selectivity towards C
    Wang M; Loiudice A; Okatenko V; Sharp ID; Buonsanti R
    Chem Sci; 2023 Feb; 14(5):1097-1104. PubMed ID: 36756336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.