BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32432604)

  • 1. Correction: Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability.
    Czakaj A; Kannan A; Wiśniewska A; Grześ G; Krzan M; Warszyński P; Fuller GG
    Soft Matter; 2020 Jun; 16(21):5094. PubMed ID: 32432604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability.
    Czakaj A; Kannan A; Wiśniewska A; Grześ G; Krzan M; Warszyński P; Fuller GG
    Soft Matter; 2020 Apr; 16(16):3981-3990. PubMed ID: 32250379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability.
    Czakaj A; Chatzigiannakis E; Vermant J; Krzan M; Warszyński P
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobisation of Silica Nanoparticles Using Lauroyl Ethyl Arginate and Chitosan Mixtures to Induce the Foaming Process.
    Krzan M; Jarek E; Petkova H; Santini E; Szyk-Warszynska L; Ravera F; Liggieri L; Mileva E; Warszynski P
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrigendum: Ethyl lauroyl arginate: an update on the antimicrobial potential and application in the food systems industry: a review.
    Mea Y; Ma Y; Chi L; Wang S; Zhang D; Xiang Q
    Front Microbiol; 2023; 14():1216552. PubMed ID: 37434708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The plaque and gingivitis inhibiting capacity of a commercially available mouthwash containing essential oils and ethyl lauroyl arginate. A randomized clinical trial.
    Valør LO; Norton IKR; Koldsland OC; Aass AM; Grjibovski AM; Preus HR
    Acta Odontol Scand; 2018 May; 76(4):241-246. PubMed ID: 29216779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms behind the stabilizing action of cellulose nanofibrils in wet-stable cellulose foams.
    Cervin NT; Johansson E; Benjamins JW; Wågberg L
    Biomacromolecules; 2015 Mar; 16(3):822-31. PubMed ID: 25635472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of food-grade Pickering oil-in-water emulsions: Tailoring functionality using mixtures of cellulose nanocrystals and lauric arginate.
    Angkuratipakorn T; Chung C; Koo CKW; Mundo JLM; McClements DJ; Decker EA; Singkhonrat J
    Food Chem; 2020 Oct; 327():127039. PubMed ID: 32454273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm of Escherichia coli O157:H7 on cantaloupe surface is resistant to lauroyl arginate ethyl and sodium hypochlorite.
    Fu Y; Deering AJ; Bhunia AK; Yao Y
    Int J Food Microbiol; 2017 Nov; 260():11-16. PubMed ID: 28843119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ethyl-lauroyl-arginate hypochloride in combination with high hydrostatic pressure processing on the microbial load and physico-chemical characteristics of minced and portioned chicken breast meat.
    Bechstein DV; Popp J; Sudhaus-Joern N; Krischek C
    Poult Sci; 2019 Feb; 98(2):966-976. PubMed ID: 30265332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogen biofilm formation on cantaloupe surface and its impact on the antibacterial effect of lauroyl arginate ethyl.
    Fu Y; Deering AJ; Bhunia AK; Yao Y
    Food Microbiol; 2017 Jun; 64():139-144. PubMed ID: 28213018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction: Plateau-Rayleigh instability in a soft viscoelastic material.
    Tamim SI; Bostwick JB
    Soft Matter; 2021 Apr; 17(14):3975. PubMed ID: 33885452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of lauric arginate application form on its antimicrobial activity on the surface of a model meat product.
    Terjung N; Monville C; Loeffler M; Gibis M; Hinrichs J; Weiss J
    J Food Sci; 2014 Oct; 79(10):M2056-65. PubMed ID: 25227890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial Rheology of Charged Anisotropic Cellulose Nanocrystals at the Air-Water Interface.
    Bertsch P; Fischer P
    Langmuir; 2019 Jun; 35(24):7937-7943. PubMed ID: 31090427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Migrants determination and bioaccessibility study of ethyl lauroyl arginate (LAE) from a LAE based antimicrobial food packaging material.
    Aznar M; Gómez-Estaca J; Vélez D; Devesa V; Nerín C
    Food Chem Toxicol; 2013 Jun; 56():363-70. PubMed ID: 23485618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose.
    Harini K; Ramya K; Sukumar M
    Carbohydr Polym; 2018 Dec; 201():329-339. PubMed ID: 30241826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses.
    Cunha AG; Mougel JB; Cathala B; Berglund LA; Capron I
    Langmuir; 2014 Aug; 30(31):9327-35. PubMed ID: 25046221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior.
    Borkotoky SS; Dhar P; Katiyar V
    Int J Biol Macromol; 2018 Jan; 106():433-446. PubMed ID: 28797817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants.
    Alzobaidi S; Da C; Tran V; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2017 Feb; 488():79-91. PubMed ID: 27821342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams.
    Hassan MM; Tucker N; Le Guen MJ
    Carbohydr Polym; 2020 Feb; 230():115675. PubMed ID: 31887917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.