BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1151 related articles for article (PubMed ID: 32432709)

  • 1. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.
    Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P
    JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study.
    Pantanowitz L; Quiroga-Garza GM; Bien L; Heled R; Laifenfeld D; Linhart C; Sandbank J; Albrecht Shach A; Shalev V; Vecsler M; Michelow P; Hazelhurst S; Dhir R
    Lancet Digit Health; 2020 Aug; 2(8):e407-e416. PubMed ID: 33328045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual contrastive learning based image-to-image translation of unstained skin tissue into virtually stained H&E images.
    Asaf MZ; Rao B; Akram MU; Khawaja SG; Khan S; Truong TM; Sekhon P; Khan IJ; Abbasi MS
    Sci Rep; 2024 Jan; 14(1):2335. PubMed ID: 38282056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative adversarial network based digital stain conversion for generating RGB EVG stained image from hyperspectral H&E stained image.
    Biswas T; Suzuki H; Ishikawa M; Kobayashi N; Obi T
    J Biomed Opt; 2023 May; 28(5):056501. PubMed ID: 37265876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A large-scale internal validation study of unsupervised virtual trichrome staining technologies on nonalcoholic steatohepatitis liver biopsies.
    Levy JJ; Azizgolshani N; Andersen MJ; Suriawinata A; Liu X; Lisovsky M; Ren B; Bobak CA; Christensen BC; Vaickus LJ
    Mod Pathol; 2021 Apr; 34(4):808-822. PubMed ID: 33299110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of deep learning models for digital H&E staining from unpaired label-free multispectral microscopy images.
    Salido J; Vallez N; González-López L; Deniz O; Bueno G
    Comput Methods Programs Biomed; 2023 Jun; 235():107528. PubMed ID: 37040684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies.
    Raciti P; Sue J; Ceballos R; Godrich R; Kunz JD; Kapur S; Reuter V; Grady L; Kanan C; Klimstra DS; Fuchs TJ
    Mod Pathol; 2020 Oct; 33(10):2058-2066. PubMed ID: 32393768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learning.
    Pradhan P; Meyer T; Vieth M; Stallmach A; Waldner M; Schmitt M; Popp J; Bocklitz T
    Biomed Opt Express; 2021 Apr; 12(4):2280-2298. PubMed ID: 33996229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unstained Tissue Imaging and Virtual Hematoxylin and Eosin Staining of Histologic Whole Slide Images.
    Koivukoski S; Khan U; Ruusuvuori P; Latonen L
    Lab Invest; 2023 May; 103(5):100070. PubMed ID: 36801642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normalization of HE-stained histological images using cycle consistent generative adversarial networks.
    Runz M; Rusche D; Schmidt S; Weihrauch MR; Hesser J; Weis CA
    Diagn Pathol; 2021 Aug; 16(1):71. PubMed ID: 34362386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Adverse Pathology at Radical Prostatectomy in Grade Group 2 and 3 Prostate Biopsies Using Machine Learning.
    Paulson N; Zeevi T; Papademetris M; Leapman MS; Onofrey JA; Sprenkle PC; Humphrey PA; Staib LH; Levi AW
    JCO Clin Cancer Inform; 2022 Sep; 6():e2200016. PubMed ID: 36179281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open-Top Light-Sheet Microscopy Image Atlas of Prostate Core Needle Biopsies.
    Reder NP; Glaser AK; McCarty EF; Chen Y; True LD; Liu JTC
    Arch Pathol Lab Med; 2019 Sep; 143(9):1069-1075. PubMed ID: 30892067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on whole tissue sections in breast carcinoma.
    Feng M; Deng Y; Yang L; Jing Q; Zhang Z; Xu L; Wei X; Zhou Y; Wu D; Xiang F; Wang Y; Bao J; Bu H
    Diagn Pathol; 2020 May; 15(1):65. PubMed ID: 32471471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens.
    Nagpal K; Foote D; Tan F; Liu Y; Chen PC; Steiner DF; Manoj N; Olson N; Smith JL; Mohtashamian A; Peterson B; Amin MB; Evans AJ; Sweet JW; Cheung C; van der Kwast T; Sangoi AR; Zhou M; Allan R; Humphrey PA; Hipp JD; Gadepalli K; Corrado GS; Peng LH; Stumpe MC; Mermel CH
    JAMA Oncol; 2020 Sep; 6(9):1372-1380. PubMed ID: 32701148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piloting a Deep Learning Model for Predicting Nuclear BAP1 Immunohistochemical Expression of Uveal Melanoma from Hematoxylin-and-Eosin Sections.
    Zhang H; Kalirai H; Acha-Sagredo A; Yang X; Zheng Y; Coupland SE
    Transl Vis Sci Technol; 2020 Sep; 9(2):50. PubMed ID: 32953248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Deep Learning Model to Quantify Glomerulosclerosis in Kidney Biopsy Specimens.
    Marsh JN; Liu TC; Wilson PC; Swamidass SJ; Gaut JP
    JAMA Netw Open; 2021 Jan; 4(1):e2030939. PubMed ID: 33471115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of color augmentation and tissue type in deep learning for hematoxylin and eosin image super resolution.
    Manuel C; Zehnder P; Kaya S; Sullivan R; Hu F
    J Pathol Inform; 2022; 13():100148. PubMed ID: 36268062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of hematoxylin and eosin staining on linear birefringence measurement of fibrous tissue structures in polarization microscopy.
    Deng L; Chen C; Yu W; Shao C; Shen Z; Wang Y; He C; Li H; Liu Z; He H; Ma H
    J Biomed Opt; 2023 Oct; 28(10):102909. PubMed ID: 37786544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning for Virtual Histological Staining of Bright-Field Microscopic Images of Unlabeled Carotid Artery Tissue.
    Li D; Hui H; Zhang Y; Tong W; Tian F; Yang X; Liu J; Chen Y; Tian J
    Mol Imaging Biol; 2020 Oct; 22(5):1301-1309. PubMed ID: 32514884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Real-Time Fluorescence Confocal Digital Microscopy With Hematoxylin-Eosin-Stained Sections of Core-Needle Biopsy Specimens.
    Krishnamurthy S; Sabir S; Ban K; Wu Y; Sheth R; Tam A; Meric-Bernstam F; Shaw K; Mills G; Bassett R; Hamilton S; Hicks M; Gupta S
    JAMA Netw Open; 2020 Mar; 3(3):e200476. PubMed ID: 32134465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.