These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32432715)

  • 1. mmCSM-AB: guiding rational antibody engineering through multiple point mutations.
    Myung Y; Pires DEV; Ascher DB
    Nucleic Acids Res; 2020 Jul; 48(W1):W125-W131. PubMed ID: 32432715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures.
    Pires DE; Ascher DB
    Nucleic Acids Res; 2016 Jul; 44(W1):W469-73. PubMed ID: 27216816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mmCSM-NA: accurately predicting effects of single and multiple mutations on protein-nucleic acid binding affinity.
    Nguyen TB; Myung Y; de Sá AGC; Pires DEV; Ascher DB
    NAR Genom Bioinform; 2021 Dec; 3(4):lqab109. PubMed ID: 34805992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Graph-Based Signatures to Guide Rational Antibody Engineering.
    Ascher DB; Kaminskas LM; Myung Y; Pires DEV
    Methods Mol Biol; 2023; 2552():375-397. PubMed ID: 36346604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mCSM-AB2: guiding rational antibody design using graph-based signatures.
    Myung Y; Rodrigues CHM; Ascher DB; Pires DEV
    Bioinformatics; 2020 Mar; 36(5):1453-1459. PubMed ID: 31665262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions.
    Rodrigues CHM; Pires DEV; Ascher DB
    Nucleic Acids Res; 2021 Jul; 49(W1):W417-W424. PubMed ID: 33893812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CSM-AB: graph-based antibody-antigen binding affinity prediction and docking scoring function.
    Myung Y; Pires DEV; Ascher DB
    Bioinformatics; 2022 Jan; 38(4):1141-1143. PubMed ID: 34734992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations.
    Rodrigues CHM; Pires DEV; Ascher DB
    Protein Sci; 2021 Jan; 30(1):60-69. PubMed ID: 32881105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mCSM-membrane: predicting the effects of mutations on transmembrane proteins.
    Pires DEV; Rodrigues CHM; Ascher DB
    Nucleic Acids Res; 2020 Jul; 48(W1):W147-W153. PubMed ID: 32469063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting antibody affinity changes upon mutations by combining multiple predictors.
    Kurumida Y; Saito Y; Kameda T
    Sci Rep; 2020 Nov; 10(1):19533. PubMed ID: 33177627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CSM-carbohydrate: protein-carbohydrate binding affinity prediction and docking scoring function.
    Nguyen TB; Pires DEV; Ascher DB
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34882232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AttABseq: an attention-based deep learning prediction method for antigen-antibody binding affinity changes based on protein sequences.
    Jin R; Ye Q; Wang J; Cao Z; Jiang D; Wang T; Kang Y; Xu W; Hsieh CY; Hou T
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DDMut: predicting effects of mutations on protein stability using deep learning.
    Zhou Y; Pan Q; Pires DEV; Rodrigues CHM; Ascher DB
    Nucleic Acids Res; 2023 Jul; 51(W1):W122-W128. PubMed ID: 37283042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AB-Bind: Antibody binding mutational database for computational affinity predictions.
    Sirin S; Apgar JR; Bennett EM; Keating AE
    Protein Sci; 2016 Feb; 25(2):393-409. PubMed ID: 26473627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trends in therapeutic antibody affinity maturation: From in-vitro towards next-generation sequencing approaches.
    Tabasinezhad M; Talebkhan Y; Wenzel W; Rahimi H; Omidinia E; Mahboudi F
    Immunol Lett; 2019 Aug; 212():106-113. PubMed ID: 31247224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pdCSM-PPI: Using Graph-Based Signatures to Identify Protein-Protein Interaction Inhibitors.
    Rodrigues CHM; Pires DEV; Ascher DB
    J Chem Inf Model; 2021 Nov; 61(11):5438-5445. PubMed ID: 34719929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering G protein-coupled receptors for stabilization.
    Velloso JPL; de Sá AGC; Pires DEV; Ascher DB
    Protein Sci; 2024 Jun; 33(6):e5000. PubMed ID: 38747401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RosettaAntibodyDesign (RAbD): A general framework for computational antibody design.
    Adolf-Bryfogle J; Kalyuzhniy O; Kubitz M; Weitzner BD; Hu X; Adachi Y; Schief WR; Dunbrack RL
    PLoS Comput Biol; 2018 Apr; 14(4):e1006112. PubMed ID: 29702641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AppA: a web server for analysis, comparison, and visualization of contact residues and interfacial waters of antibody-antigen structures and models.
    Nguyen MN; Verma CS; Zhong P
    Nucleic Acids Res; 2019 Jul; 47(W1):W482-W489. PubMed ID: 31069385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pdCSM-GPCR: predicting potent GPCR ligands with graph-based signatures.
    Velloso JPL; Ascher DB; Pires DEV
    Bioinform Adv; 2021; 1(1):vbab031. PubMed ID: 34901870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.