These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32432849)

  • 21. A universal strategy for aptamer-based nanopore sensing through host-guest interactions inside α-hemolysin.
    Li T; Liu L; Li Y; Xie J; Wu HC
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7568-71. PubMed ID: 25966821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translocation of single-stranded DNA through the α-hemolysin protein nanopore in acidic solutions.
    de Zoysa RS; Krishantha DM; Zhao Q; Gupta J; Guan X
    Electrophoresis; 2011 Nov; 32(21):3034-41. PubMed ID: 21997574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly sensitive and selective DNA-based detection of mercury(II) with α-hemolysin nanopore.
    Wen S; Zeng T; Liu L; Zhao K; Zhao Y; Liu X; Wu HC
    J Am Chem Soc; 2011 Nov; 133(45):18312-7. PubMed ID: 21995430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unzipping Mechanism of Free and Polyarginine-Conjugated DNA-PNA Duplexes, Preconfined Inside the α-Hemolysin Nanopore.
    Dragomir IS; Bucataru IC; Schiopu I; Luchian T
    Anal Chem; 2020 Jun; 92(11):7800-7807. PubMed ID: 32367708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microscopic Mechanism of Macromolecular Crowder-Assisted DNA Capture and Translocation through Biological Nanopores.
    Punia B; Chaudhury S
    J Phys Chem B; 2023 Jul; 127(26):5850-5858. PubMed ID: 37294938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discrimination of neutral oligosaccharides through a nanopore.
    Bacri L; Oukhaled A; Hémon E; Bassafoula FB; Auvray L; Daniel R
    Biochem Biophys Res Commun; 2011 Sep; 412(4):561-4. PubMed ID: 21839725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanopore sequencing technology: nanopore preparations.
    Rhee M; Burns MA
    Trends Biotechnol; 2007 Apr; 25(4):174-81. PubMed ID: 17320228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore.
    Zhang X; Price NE; Fang X; Yang Z; Gu LQ; Gates KS
    ACS Nano; 2015 Dec; 9(12):11812-9. PubMed ID: 26563913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore.
    Di Marino D; Bonome EL; Tramontano A; Chinappi M
    J Phys Chem Lett; 2015 Aug; 6(15):2963-8. PubMed ID: 26267189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptide sequencing based on host-guest interaction-assisted nanopore sensing.
    Zhang Y; Yi Y; Li Z; Zhou K; Liu L; Wu HC
    Nat Methods; 2024 Jan; 21(1):102-109. PubMed ID: 37957431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP.
    Nivala J; Mulroney L; Luan Q; Abu-Shumays R; Akeson M
    Methods Mol Biol; 2021; 2186():145-155. PubMed ID: 32918735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Narrowing Signal Distribution by Adamantane Derivatization for Amino Acid Identification Using an α-Hemolysin Nanopore.
    Wei X; Ma D; Ou J; Song G; Guo J; Robertson JWF; Wang Y; Wang Q; Liu C
    Nano Lett; 2024 Feb; 24(5):1494-1501. PubMed ID: 38264980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanopore detection of copper ions using a polyhistidine probe.
    Wang G; Wang L; Han Y; Zhou S; Guan X
    Biosens Bioelectron; 2014 Mar; 53():453-8. PubMed ID: 24211457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlling DNA Fragments Translocation across Nanopores with the Synergic Use of Site-Directed Mutagenesis, pH-Dependent Charge Tuning, and Electroosmotic Flow.
    Mereuta L; Bhatti H; Asandei A; Cimpanu A; Ying YL; Long YT; Luchian T
    ACS Appl Mater Interfaces; 2024 Jul; 16(30):40100-40110. PubMed ID: 39038810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanopore-Assisted, Sequence-Specific Detection, and Single-Molecule Hybridization Analysis of Short, Single-Stranded DNAs.
    Mereuta L; Asandei A; Schiopu I; Park Y; Luchian T
    Anal Chem; 2019 Jul; 91(13):8630-8637. PubMed ID: 31194518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enabling nanopore technology for sensing individual amino acids by a derivatization strategy.
    Wei X; Ma D; Jing L; Wang LY; Wang X; Zhang Z; Lenhart BJ; Yin Y; Wang Q; Liu C
    J Mater Chem B; 2020 Aug; 8(31):6792-6797. PubMed ID: 32495805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polynucleotide differentiation using hybrid solid-state nanopore functionalizing with α-hemolysin.
    Bentin J; Balme S; Picaud F
    Soft Matter; 2020 Jan; 16(4):1002-1010. PubMed ID: 31853534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly sensitive simultaneous detection of lead(II) and barium(II) with G-quadruplex DNA in α-hemolysin nanopore.
    Yang C; Liu L; Zeng T; Yang D; Yao Z; Zhao Y; Wu HC
    Anal Chem; 2013 Aug; 85(15):7302-7. PubMed ID: 23895278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoparticle-assisted detection of nucleic acids in a polymeric nanopore with a large pore size.
    Zhang Y; Chen X; Wang C; Chang HC; Guan X
    Biosens Bioelectron; 2022 Jan; 196():113697. PubMed ID: 34649096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.