These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 32432861)
1. Formation and Immobilization of Cr(VI) Species in Long-Term Tannery Waste Contaminated Soils. Shi J; McGill WB; Chen N; Rutherford PM; Whitcombe TW; Zhang W Environ Sci Technol; 2020 Jun; 54(12):7226-7235. PubMed ID: 32432861 [TBL] [Abstract][Full Text] [Related]
2. Chemistry of chromium in soils with emphasis on tannery waste sites. Avudainayagam S; Megharaj M; Owens G; Kookana RS; Chittleborough D; Naidu R Rev Environ Contam Toxicol; 2003; 178():53-91. PubMed ID: 12868781 [TBL] [Abstract][Full Text] [Related]
3. Differential transformation mechanisms of exotic Cr(VI) in agricultural soils with contrasting physio-chemical and biological properties. Wang Y; Yang J; Han H; Hu Y; Wang J; Feng Y; Yu B; Xia X; Darma A Chemosphere; 2021 Sep; 279():130546. PubMed ID: 33894520 [TBL] [Abstract][Full Text] [Related]
4. Aging shapes Cr(VI) speciation in five different soils. Shi J; McGill WB; Rutherford PM; Whitcombe TW; Zhang W Sci Total Environ; 2022 Jan; 804():150066. PubMed ID: 34520931 [TBL] [Abstract][Full Text] [Related]
5. Elemental sulfur amendment decreases bio-available Cr-VI in soils impacted by leather tanneries. Shi J; Chen H; Arocena JM; Whitcombe T; Thring RW; Memiaghe JN Environ Pollut; 2016 May; 212():57-64. PubMed ID: 26840517 [TBL] [Abstract][Full Text] [Related]
6. Key Cr species controlling Cr stability in contaminated soils before and chemical stabilization at a remediation engineering site. Li D; Li G; He Y; Zhao Y; Miao Q; Zhang H; Yuan Y; Zhang D J Hazard Mater; 2022 Feb; 424(Pt B):127532. PubMed ID: 34879522 [TBL] [Abstract][Full Text] [Related]
7. Chromium-microorganism interactions in soils: remediation implications. Kamaludeen SP; Megharaj M; Juhasz AL; Sethunathan N; Naidu R Rev Environ Contam Toxicol; 2003; 178():93-164. PubMed ID: 12868782 [TBL] [Abstract][Full Text] [Related]
8. XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia. Fandeur D; Juillot F; Morin G; Olivi L; Cognigni A; Webb SM; Ambrosi JP; Fritsch E; Guyot F; Brown GE Environ Sci Technol; 2009 Oct; 43(19):7384-90. PubMed ID: 19848150 [TBL] [Abstract][Full Text] [Related]
9. Hexavalent chromium reduction by tartaric acid and isopropyl alcohol in Mid-Atlantic soils and the role of Mn(III,IV)(hydr)oxides. Brose DA; James BR Environ Sci Technol; 2013 Nov; 47(22):12985-91. PubMed ID: 24102200 [TBL] [Abstract][Full Text] [Related]
10. Impact of δ-MnO Kong X; Wang Y; Ma L; Li H; Han Z Environ Sci Pollut Res Int; 2022 Jun; 29(30):45328-45337. PubMed ID: 35141831 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils. Rock ML; James BR; Helz GR Environ Sci Technol; 2001 Oct; 35(20):4054-9. PubMed ID: 11686366 [TBL] [Abstract][Full Text] [Related]
12. XANES spectroscopy studies of Cr(VI) reduction by thiols in organosulfur compounds and humic substances. Szulczewski MD; Helmke PA; Bleam WF Environ Sci Technol; 2001 Mar; 35(6):1134-41. PubMed ID: 11347925 [TBL] [Abstract][Full Text] [Related]
13. Hexavalent chromium quantification by isotope dilution mass spectrometry in potentially contaminated soils from south Italy. Caporale AG; Agrelli D; Rodríguez-González P; Adamo P; Alonso JIG Chemosphere; 2019 Oct; 233():92-100. PubMed ID: 31170588 [TBL] [Abstract][Full Text] [Related]
14. Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Choppala G; Bolan N; Kunhikrishnan A; Skinner W; Seshadri B Environ Sci Pollut Res Int; 2015 Jun; 22(12):8969-78. PubMed ID: 23539209 [TBL] [Abstract][Full Text] [Related]
15. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides. Burton ED; Choppala G; Karimian N; Johnston SG Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817 [TBL] [Abstract][Full Text] [Related]
16. Pollution and health-risk assessments of Cr-contaminated soils from a tannery waste lagoon, Hebei, north China: With emphasis on Cr speciation. Xie P; Liu Z; Li J; Ju D; Ding X; Wang Y; Hower JC Chemosphere; 2023 Mar; 317():137908. PubMed ID: 36681196 [TBL] [Abstract][Full Text] [Related]
17. Chromium availability in ultramafic soils from New Caledonia. Becquer T; Quantin C; Sicot M; Boudot JP Sci Total Environ; 2003 Jan; 301(1-3):251-61. PubMed ID: 12493201 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the spectroscopic speciation and chemical fractionation of chromium in contaminated paddy soils. Hsu LC; Liu YT; Tzou YM J Hazard Mater; 2015 Oct; 296():230-238. PubMed ID: 25935296 [TBL] [Abstract][Full Text] [Related]
19. Influence of elevated temperature on the species and mobility of chromium in ferrous sulfate-amended contaminated soil. Zhao R; Zhang X; Zhou Y; Li J; Guo B; Oyama K; Tokoro C J Environ Manage; 2024 Apr; 356():120457. PubMed ID: 38503231 [TBL] [Abstract][Full Text] [Related]
20. Contrasting effects of Cr(III) and Cr(VI) on lettuce grown in hydroponics and soil: Chromium and manganese speciation. Park JH Environ Pollut; 2020 Nov; 266(Pt 2):115073. PubMed ID: 32629411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]