These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32432892)

  • 1. Development and calibration of a probabilistic finite element hip capsule representation.
    Myers CA; Fitzpatrick CK; Huff DN; Laz PJ; Rullkoetter PJ
    Comput Methods Biomech Biomed Engin; 2020 Aug; 23(11):755-764. PubMed ID: 32432892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient probabilistic finite element analysis of a lumbar motion segment.
    Coombs DJ; Rullkoetter PJ; Laz PJ
    J Biomech; 2017 Aug; 61():65-74. PubMed ID: 28733037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study.
    Wan C; Hao Z; Wen S
    J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics.
    Brolin K; Halldin P
    Spine (Phila Pa 1976); 2004 Feb; 29(4):376-85. PubMed ID: 15094533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of population variability in ligament material properties on the mechanical behavior of ankle: a computational investigation.
    Liu Y; Zhou Q; Gan S; Nie B
    Comput Methods Biomech Biomed Engin; 2020 Feb; 23(2):43-53. PubMed ID: 31809575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The denticulate ligament - Tensile characterisation and finite element micro-scale model of the structure stabilising spinal cord.
    Polak-Kraśna K; Robak-Nawrocka S; Szotek S; Czyż M; Gheek D; Pezowicz C
    J Mech Behav Biomed Mater; 2019 Mar; 91():10-17. PubMed ID: 30529981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hip capsule biomechanics after arthroplasty: the effect of implant, approach, and surgical repair.
    Logishetty K; van Arkel RJ; Ng KCG; Muirhead-Allwood SK; Cobb JP; Jeffers JRT
    Bone Joint J; 2019 Apr; 101-B(4):426-434. PubMed ID: 30929480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating ligament laxity in a finite element model for the upper cervical spine.
    Lasswell TL; Cronin DS; Medley JB; Rasoulinejad P
    Spine J; 2017 Nov; 17(11):1755-1764. PubMed ID: 28673824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hip Joint Torsional Loading Before and After Cam Femoroacetabular Impingement Surgery.
    Ng KCG; El Daou H; Bankes MJK; Rodriguez Y Baena F; Jeffers JRT
    Am J Sports Med; 2019 Feb; 47(2):420-430. PubMed ID: 30596529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical Effects of Capsular Shift in the Treatment of Hip Microinstability: Creation and Testing of a Novel Hip Instability Model.
    Jackson TJ; Peterson AB; Akeda M; Estess A; McGarry MH; Adamson GJ; Lee TQ
    Am J Sports Med; 2016 Mar; 44(3):689-95. PubMed ID: 26717973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.
    Naghibi Beidokhti H; Janssen D; van de Groes S; Hazrati J; Van den Boogaard T; Verdonschot N
    J Biomech; 2017 Dec; 65():1-11. PubMed ID: 28917580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary Stability of an Acromioclavicular Joint Repair Is Affected by the Type of Additional Reconstruction of the Acromioclavicular Capsule.
    Dyrna F; Imhoff FB; Haller B; Braun S; Obopilwe E; Apostolakos JM; Morikawa D; Imhoff AB; Mazzocca AD; Beitzel K
    Am J Sports Med; 2018 Dec; 46(14):3471-3479. PubMed ID: 30419178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hip Capsular Closure: A Biomechanical Analysis of Failure Torque.
    Chahla J; Mikula JD; Schon JM; Dean CS; Dahl KD; Menge TJ; Soares E; Turnbull TL; LaPrade RF; Philippon MJ
    Am J Sports Med; 2017 Feb; 45(2):434-439. PubMed ID: 27659939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The envelope of passive motion allowed by the capsular ligaments of the hip.
    van Arkel RJ; Amis AA; Jeffers JR
    J Biomech; 2015 Nov; 48(14):3803-9. PubMed ID: 26429769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model.
    Naserkhaki S; Arjmand N; Shirazi-Adl A; Farahmand F; El-Rich M
    J Biomech; 2018 Mar; 70():33-42. PubMed ID: 28549604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementing capsule representation in a total hip dislocation finite element model.
    Stewart KJ; Pedersen DR; Callaghan JJ; Brown TD
    Iowa Orthop J; 2004; 24():1-8. PubMed ID: 15296198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does Capsular Laxity Lead to Microinstability of the Native Hip?
    Han S; Alexander JW; Thomas VS; Choi J; Harris JD; Doherty DB; Jeffers JRT; Noble PC
    Am J Sports Med; 2018 May; 46(6):1315-1323. PubMed ID: 29505731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element analysis of sacroiliac joint ligaments in response to different loading conditions.
    Eichenseer PH; Sybert DR; Cotton JR
    Spine (Phila Pa 1976); 2011 Oct; 36(22):E1446-52. PubMed ID: 21311405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.