BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32433002)

  • 1. Tumor-targeted Drug Delivery by Nanocomposites.
    Baker A; Khan MS; Iqbal MZ; Khan MS
    Curr Drug Metab; 2020; 21(8):599-613. PubMed ID: 32433002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment.
    Chen B; Dai W; He B; Zhang H; Wang X; Wang Y; Zhang Q
    Theranostics; 2017; 7(3):538-558. PubMed ID: 28255348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promising effects of nanomedicine in cancer drug delivery.
    Wakaskar RR
    J Drug Target; 2018 Apr; 26(4):319-324. PubMed ID: 28875739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The development of novel tumor targeting delivery strategy].
    Gao HL; Jiang XG
    Yao Xue Xue Bao; 2016 Feb; 51(2):272-80. PubMed ID: 29856581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart nanoparticles with a detachable outer shell for maximized synergistic antitumor efficacy of therapeutics with varying physicochemical properties.
    Yin T; Liu J; Zhao Z; Dong L; Cai H; Yin L; Zhou J; Huo M
    J Control Release; 2016 Dec; 243():54-68. PubMed ID: 27702595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methotrexate-based amphiphilic prodrug nanoaggregates for co-administration of multiple therapeutics and synergistic cancer therapy.
    Hou M; Gao YE; Shi X; Bai S; Ma X; Li B; Xiao B; Xue P; Kang Y; Xu Z
    Acta Biomater; 2018 Sep; 77():228-239. PubMed ID: 30006314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system.
    Song YH; Shin E; Wang H; Nolan J; Low S; Parsons D; Zale S; Ashton S; Ashford M; Ali M; Thrasher D; Boylan N; Troiano G
    J Control Release; 2016 May; 229():106-119. PubMed ID: 27001894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles.
    Niu Y; Zhu J; Li Y; Shi H; Gong Y; Li R; Huo Q; Ma T; Liu Y
    J Control Release; 2018 May; 277():35-47. PubMed ID: 29545106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis on the current status of targeted drug delivery to tumors.
    Kwon IK; Lee SC; Han B; Park K
    J Control Release; 2012 Dec; 164(2):108-14. PubMed ID: 22800574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bottom up design of nanoparticles for anti-cancer diapeutics: "put the drug in the cancer's food".
    Needham D; Arslanagic A; Glud K; Hervella P; Karimi L; Høeilund-Carlsen PF; Kinoshita K; Mollenhauer J; Parra E; Utoft A; Walke P
    J Drug Target; 2016 Nov; 24(9):836-856. PubMed ID: 27646195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the role of nanoparticles as modulators of drug resistance and metabolism in cancer.
    Gupta P; Jani KA; Yang DH; Sadoqi M; Squillante E; Chen ZS
    Expert Opin Drug Metab Toxicol; 2016; 12(3):281-9. PubMed ID: 26799671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and soft formulation of folate-functionalized nanoparticles for the targeted delivery of tripentone in ovarian carcinoma.
    Tomasina J; Poulain L; Abeilard E; Giffard F; Brotin E; Carduner L; Carreiras F; Gauduchon P; Rault S; Malzert-Fréon A
    Int J Pharm; 2013 Dec; 458(1):197-207. PubMed ID: 24084450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles for tumor targeted therapies and their pharmacokinetics.
    Wang J; Sui M; Fan W
    Curr Drug Metab; 2010 Feb; 11(2):129-41. PubMed ID: 20359289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pharmacokinetic model for quantifying the effect of vascular permeability on the choice of drug carrier: a framework for personalized nanomedicine.
    Kirtane AR; Siegel RA; Panyam J
    J Pharm Sci; 2015 Mar; 104(3):1174-86. PubMed ID: 25583443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotherapeutics to overcome conventional cancer chemotherapy limitations.
    Chidambaram M; Manavalan R; Kathiresan K
    J Pharm Pharm Sci; 2011; 14(1):67-77. PubMed ID: 21501554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 'Smart' nanoparticles as drug delivery systems for applications in tumor therapy.
    Fang Z; Wan LY; Chu LY; Zhang YQ; Wu JF
    Expert Opin Drug Deliv; 2015; 12(12):1943-53. PubMed ID: 26193970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocarriers for cancer-targeted drug delivery.
    Kumari P; Ghosh B; Biswas S
    J Drug Target; 2016; 24(3):179-91. PubMed ID: 26061298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls.
    Nakamura H; Fang J; Maeda H
    Expert Opin Drug Deliv; 2015 Jan; 12(1):53-64. PubMed ID: 25425260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.