These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32433538)

  • 1. Precise coupling of the thalamic head-direction system to hippocampal ripples.
    Viejo G; Peyrache A
    Nat Commun; 2020 May; 11(1):2524. PubMed ID: 32433538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus.
    Yang M; Logothetis NK; Eschenko O
    J Neurosci; 2019 Jan; 39(3):434-444. PubMed ID: 30459228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep.
    Varela C; Wilson MA
    Elife; 2020 Jun; 9():. PubMed ID: 32525480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity.
    Wang DV; Ikemoto S
    J Neurosci; 2016 Oct; 36(41):10663-10672. PubMed ID: 27733616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bidirectional Interaction of Hippocampal Ripples and Cortical Slow Waves Leads to Coordinated Spiking Activity During NREM Sleep.
    Sanda P; Malerba P; Jiang X; Krishnan GP; Gonzalez-Martinez J; Halgren E; Bazhenov M
    Cereb Cortex; 2021 Jan; 31(1):324-340. PubMed ID: 32995860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dentate Gyrus Sharp Waves, a Local Field Potential Correlate of Learning in the Dentate Gyrus of Mice.
    Meier K; Merseburg A; Isbrandt D; Marguet SL; Morellini F
    J Neurosci; 2020 Sep; 40(37):7105-7118. PubMed ID: 32817247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States.
    Tang W; Shin JD; Frank LM; Jadhav SP
    J Neurosci; 2017 Dec; 37(49):11789-11805. PubMed ID: 29089440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling between slow waves and sharp-wave ripples engages distributed neural activity during sleep in humans.
    Skelin I; Zhang H; Zheng J; Ma S; Mander BA; Kim McManus O; Vadera S; Knight RT; McNaughton BL; Lin JJ
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34001599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms.
    Latchoumane CV; Ngo HV; Born J; Shin HS
    Neuron; 2017 Jul; 95(2):424-435.e6. PubMed ID: 28689981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posterior Hippocampal Spindle Ripples Co-occur with Neocortical Theta Bursts and Downstates-Upstates, and Phase-Lock with Parietal Spindles during NREM Sleep in Humans.
    Jiang X; Gonzalez-Martinez J; Halgren E
    J Neurosci; 2019 Nov; 39(45):8949-8968. PubMed ID: 31530646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfiguration of the cortical-hippocampal interaction may compensate for Sharp-Wave Ripple deficits in APP/PS1 mice and support spatial memory formation.
    Jura B; Młoźniak D; Goszczyńska H; Blinowska K; Biendon N; Macrez N; Meyrand P; Bem T
    PLoS One; 2020; 15(12):e0243767. PubMed ID: 33382724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Hippocampal-Thalamocortical Temporal Coordination during Slow-Frequency Long-Duration Anterior Thalamic Spindles.
    Alizadeh Z; Azimi A; Ghorbani M
    J Neurosci; 2022 Sep; 42(38):7222-7243. PubMed ID: 35970563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Midline thalamic neurons are differentially engaged during hippocampus network oscillations.
    Lara-Vásquez A; Espinosa N; Durán E; Stockle M; Fuentealba P
    Sci Rep; 2016 Jul; 6():29807. PubMed ID: 27411890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory cortical ensembles exhibit differential coupling to ripples in distinct hippocampal subregions.
    Jeong H; Namboodiri VMK; Jung MW; Andermann ML
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep Deprivation Impairs Learning-Induced Increase in Hippocampal Sharp Wave Ripples and Associated Spike Dynamics during Recovery Sleep.
    Li RR; Yan J; Chen H; Zhang WW; Hu YB; Zhang J; Hu ZA; Xiong Y; Yao ZX; Hu B
    Cereb Cortex; 2022 Feb; 32(4):824-838. PubMed ID: 34383018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus.
    Hargreaves EL; Yoganarasimha D; Knierim JJ
    Hippocampus; 2007; 17(9):826-41. PubMed ID: 17598156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hippocampal sharp-wave ripples in awake mice are entrained by respiration.
    Liu Y; McAfee SS; Heck DH
    Sci Rep; 2017 Aug; 7(1):8950. PubMed ID: 28827599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalamocortical processing of the head-direction sense.
    Peyrache A; Duszkiewicz AJ; Viejo G; Angeles-Duran S
    Prog Neurobiol; 2019 Dec; 183():101693. PubMed ID: 31550513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Status epilepticus induces chronic silencing of burster and dominance of regular firing neurons during sharp wave-ripples in the mouse subiculum.
    Lippmann K; Klaft ZJ; Salar S; Hollnagel JO; Valero M; Maslarova A
    Neurobiol Dis; 2022 Dec; 175():105929. PubMed ID: 36410634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra- and interregional cortical interactions related to sharp-wave ripples and dentate spikes.
    Headley DB; Kanta V; Paré D
    J Neurophysiol; 2017 Feb; 117(2):556-565. PubMed ID: 27832604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.