BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32433562)

  • 1. Effects of climate and land-use changes on fish catches across lakes at a global scale.
    Kao YC; Rogers MW; Bunnell DB; Cowx IG; Qian SS; Anneville O; Beard TD; Brinker A; Britton JR; Chura-Cruz R; Gownaris NJ; Jackson JR; Kangur K; Kolding J; Lukin AA; Lynch AJ; Mercado-Silva N; Moncayo-Estrada R; Njaya FJ; Ostrovsky I; Rudstam LG; Sandström ALE; Sato Y; Siguayro-Mamani H; Thorpe A; van Zwieten PAM; Volta P; Wang Y; Weiperth A; Weyl OLF; Young JD
    Nat Commun; 2020 May; 11(1):2526. PubMed ID: 32433562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of changing climate on the ecology and management of selected Laurentian Great Lakes fisheries.
    Lynch AJ; Taylor WW; Smith KD
    J Fish Biol; 2010 Nov; 77(8):1764-82. PubMed ID: 21078089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interactive effects of rainfall, temperature and water level on fish yield in Lake Bangweulu fishery, Zambia.
    Ng'onga M; Kalaba FK; Mwitwa J; Nyimbiri B
    J Therm Biol; 2019 Aug; 84():45-52. PubMed ID: 31466785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems.
    Cohen AS; Gergurich EL; Kraemer BM; McGlue MM; McIntyre PB; Russell JM; Simmons JD; Swarzenski PW
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9563-8. PubMed ID: 27503877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate and landscape conditions indirectly affect fish mercury levels by altering lake water chemistry and fish size.
    Thomas SM; Melles SJ; Mackereth RW; Tunney TD; Chu C; Oswald CJ; Bhavsar SP; Johnston TA
    Environ Res; 2020 Sep; 188():109750. PubMed ID: 32526497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warming-driven shifts in ecological control of fish communities in a large northern Chinese lake over 66 years.
    Bao H; Wang G; Yao Y; Peng Z; Dou H; Jiang G
    Sci Total Environ; 2021 May; 770():144722. PubMed ID: 33736366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoplankton and cyanobacteria abundances in mid-21st century lakes depend strongly on future land use and climate projections.
    Kakouei K; Kraemer BM; Anneville O; Carvalho L; Feuchtmayr H; Graham JL; Higgins S; Pomati F; Rudstam LG; Stockwell JD; Thackeray SJ; Vanni MJ; Adrian R
    Glob Chang Biol; 2021 Dec; 27(24):6409-6422. PubMed ID: 34465002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-related increase in growth rate in four freshwater lake fish species.
    Tien NSH; de Leeuw JJ; van Rijssel JC; van der Hammen T; Volwater JJJ
    J Fish Biol; 2024 Jun; 104(6):2044-2055. PubMed ID: 38594227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America.
    Warren DR; Kraft CE; Josephson DC; Driscoll CT
    Glob Chang Biol; 2017 Jun; 23(6):2149-2153. PubMed ID: 27976837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir.
    Bucak T; Trolle D; Tavşanoğlu ÜN; Çakıroğlu Aİ; Özen A; Jeppesen E; Beklioğlu M
    Sci Total Environ; 2018 Apr; 621():802-816. PubMed ID: 29202291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of lake-specific characteristics for water quality across the continental United States.
    Read EK; Patil VP; Oliver SK; Hetherington AL; Brentrup JA; Zwart JA; Winters KM; Corman JR; Nodine ER; Woolway RI; Dugan HA; Jaimes A; Santoso AB; Hong GS; Winslow LA; Hanson PC; Weathers KC
    Ecol Appl; 2015 Jun; 25(4):943-55. PubMed ID: 26465035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unexpected stasis in a changing world: Lake nutrient and chlorophyll trends since 1990.
    Oliver SK; Collins SM; Soranno PA; Wagner T; Stanley EH; Jones JR; Stow CA; Lottig NR
    Glob Chang Biol; 2017 Dec; 23(12):5455-5467. PubMed ID: 28834575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disentangling the effects of a century of eutrophication and climate warming on freshwater lake fish assemblages.
    Jacobson PC; Hansen GJA; Bethke BJ; Cross TK
    PLoS One; 2017; 12(8):e0182667. PubMed ID: 28777816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate and land use interactively affect lake phytoplankton nutrient limitation status.
    Hayes NM; Vanni MJ; Horgan MJ; Renwick WH
    Ecology; 2015 Feb; 96(2):392-402. PubMed ID: 26240861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micronutrient supply from global marine fisheries under climate change and overfishing.
    Maire E; Graham NAJ; MacNeil MA; Lam VWY; Robinson JPW; Cheung WWL; Hicks CC
    Curr Biol; 2021 Sep; 31(18):4132-4138.e3. PubMed ID: 34289388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal trends, lake-to-lake variation, and climate effects on Arctic char (Salvelinus alpinus) mercury concentrations from six High Arctic lakes in Nunavut, Canada.
    Hudelson KE; Muir DCG; Drevnick PE; Köck G; Iqaluk D; Wang X; Kirk JL; Barst BD; Grgicak-Mannion A; Shearon R; Fisk AT
    Sci Total Environ; 2019 Aug; 678():801-812. PubMed ID: 31085496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riparian ecosystem resilience and livelihood strategies under test: lessons from Lake Chilwa in Malawi and other lakes in Africa.
    Kafumbata D; Jamu D; Chiotha S
    Philos Trans R Soc Lond B Biol Sci; 2014 Apr; 369(1639):20130052. PubMed ID: 24535395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multispecies Fisheries in the Lower Amazon River and Its Relationship with the Regional and Global Climate Variability.
    Pinaya WH; Lobon-Cervia FJ; Pita P; Buss de Souza R; Freire J; Isaac VJ
    PLoS One; 2016; 11(6):e0157050. PubMed ID: 27314951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogenization of freshwater lakes: Recent compositional shifts in fish communities are explained by gamefish movement and not climate change.
    Cazelles K; Bartley T; Guzzo MM; Brice MH; MacDougall AS; Bennett JR; Esch EH; Kadoya T; Kelly J; Matsuzaki SI; Nilsson KA; McCann KS
    Glob Chang Biol; 2019 Dec; 25(12):4222-4233. PubMed ID: 31502733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fish thermal habitat current use and simulation of thermal habitat availability in lakes of the Argentine Patagonian Andes under climate change scenarios RCP 4.5 and RCP 8.5.
    Vigliano PH; Rechencq MM; Fernández MV; Lippolt GE; Macchi PJ
    Sci Total Environ; 2018 Sep; 636():688-698. PubMed ID: 29727836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.