These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32433580)

  • 1. Automated detection of the head-twitch response using wavelet scalograms and a deep convolutional neural network.
    Halberstadt AL
    Sci Rep; 2020 May; 10(1):8344. PubMed ID: 32433580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the head-twitch response induced by hallucinogens in mice: detection of the behavior based on the dynamics of head movement.
    Halberstadt AL; Geyer MA
    Psychopharmacology (Berl); 2013 Jun; 227(4):727-39. PubMed ID: 23407781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species.
    Halberstadt AL; Chatha M; Klein AK; Wallach J; Brandt SD
    Neuropharmacology; 2020 May; 167():107933. PubMed ID: 31917152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated head-twitch detection system for the study of 5-HT
    de la Fuente Revenga M; Shin JM; Vohra HZ; Hideshima KS; Schneck M; Poklis JL; González-Maeso J
    Sci Rep; 2019 Oct; 9(1):14247. PubMed ID: 31582824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the behavioral effects of mescaline analogs using the head twitch response in mice.
    Halberstadt AL; Chatha M; Chapman SJ; Brandt SD
    J Psychopharmacol; 2019 Mar; 33(3):406-414. PubMed ID: 30789291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral arrest and a characteristic slow waveform are hallmark responses to selective 5-HT
    Contreras A; Khumnark M; Hines RM; Hines DJ
    Sci Rep; 2021 Jan; 11(1):1925. PubMed ID: 33479368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental Heart Sound Classification using the Continuous Wavelet Transform and Convolutional Neural Networks.
    Meintjes A; Lowe A; Legget M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():409-412. PubMed ID: 30440420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Identification of Hookahs (Waterpipes) on Instagram: An Application in Feature Extraction Using Convolutional Neural Network and Support Vector Machine Classification.
    Zhang Y; Allem JP; Unger JB; Boley Cruz T
    J Med Internet Res; 2018 Nov; 20(11):e10513. PubMed ID: 30452385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated quantification of head-twitch response in mice via ear tag reporter coupled with biphasic detection.
    de la Fuente Revenga M; Vohra HZ; González-Maeso J
    J Neurosci Methods; 2020 Jan; 334():108595. PubMed ID: 31954738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor binding profiles and behavioral pharmacology of ring-substituted N,N-diallyltryptamine analogs.
    Klein LM; Cozzi NV; Daley PF; Brandt SD; Halberstadt AL
    Neuropharmacology; 2018 Nov; 142():231-239. PubMed ID: 29499272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent Deep Models Based on Scalograms of Electrocardiogram Signals for Biometrics.
    Byeon YH; Pan SB; Kwak KC
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks.
    Jayalakshmy S; Sudha GF
    Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.
    McAllister P; Zheng H; Bond R; Moorhead A
    Comput Biol Med; 2018 Apr; 95():217-233. PubMed ID: 29549733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysregulated corticostriatal activity in open-field behavior and the head-twitch response induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine.
    Rangel-Barajas C; Estrada-Sánchez AM; Barton SJ; Luedtke RR; Rebec GV
    Neuropharmacology; 2017 Feb; 113(Pt A):502-510. PubMed ID: 27816502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological modulation of abnormal involuntary DOI-induced head twitch response movements in male DBA/2J mice: II. Effects of D3 dopamine receptor selective compounds.
    Rangel-Barajas C; Malik M; Mach RH; Luedtke RR
    Neuropharmacology; 2015 Jun; 93():179-90. PubMed ID: 25698528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential ontogenesis of three DOI-induced behaviors in mice.
    Darmani NA; Shaddy J; Gerdes CF
    Physiol Behav; 1996 Dec; 60(6):1495-500. PubMed ID: 8946497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
    Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X
    Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells.
    Kavitha MS; Kurita T; Park SY; Chien SI; Bae JS; Ahn BC
    PLoS One; 2017; 12(12):e0189974. PubMed ID: 29281701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of Hallucinogens with the Glutamatergic System: Permissive Network Effects Mediated Through Cortical Layer V Pyramidal Neurons.
    Marek GJ
    Curr Top Behav Neurosci; 2018; 36():107-135. PubMed ID: 28831734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of G(q) protein in behavioral effects of the hallucinogenic drug 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane.
    Garcia EE; Smith RL; Sanders-Bush E
    Neuropharmacology; 2007 Jun; 52(8):1671-7. PubMed ID: 17493641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.