These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 3243376)
1. Valinomycin-induced chloride permeability in isolated rat liver mitochondria. Schnell FC; Moreland DE Int J Biochem; 1988; 20(12):1361-8. PubMed ID: 3243376 [TBL] [Abstract][Full Text] [Related]
2. Activation of ion-conducting pathways in the inner mitochondrial membrane - an unrecognized activity of fatty acid? Schönfeld P; Schlüter T; Schüttig R; Bohnensack R FEBS Lett; 2001 Feb; 491(1-2):45-9. PubMed ID: 11226416 [TBL] [Abstract][Full Text] [Related]
3. Changes in permeability to protons and other cations at high proton motive force in rat liver mitochondria. Brown GC; Brand MD Biochem J; 1986 Feb; 234(1):75-81. PubMed ID: 3010957 [TBL] [Abstract][Full Text] [Related]
4. Chloride-dependent uncoupling mediated by oligomycin in rat liver mitochondria. Ariel N; Avi-Dor Y Biochem J; 1973 Dec; 136(4):911-7. PubMed ID: 4274378 [TBL] [Abstract][Full Text] [Related]
5. Effect of phthalate esters on energy coupling and succinate oxidation in rat liver mitochondria. Melnick RL; Schiller CM Toxicology; 1985 Jan; 34(1):13-27. PubMed ID: 3969678 [TBL] [Abstract][Full Text] [Related]
6. Histone inhibition of mitochondrial proton transport. Hillar M Arch Int Physiol Biochim; 1978 May; 86(2):227-33. PubMed ID: 80979 [TBL] [Abstract][Full Text] [Related]
7. Effects of chlordecone and its alteration products on isolated rat liver mitochondria. Soileau SD; Moreland DE Toxicol Appl Pharmacol; 1983 Jan; 67(1):89-99. PubMed ID: 6189267 [TBL] [Abstract][Full Text] [Related]
8. Valinomycin induced energy-dependent mitochondrial swelling, cytochrome c release, cytosolic NADH/cytochrome c oxidation and apoptosis. Lofrumento DD; La Piana G; Abbrescia DI; Palmitessa V; La Pesa V; Marzulli D; Lofrumento NE Apoptosis; 2011 Oct; 16(10):1004-13. PubMed ID: 21739274 [TBL] [Abstract][Full Text] [Related]
9. Respiratory control and mitochondrial monovalent cation permeability of isolated liver cells. Dubinsky WP; Cockrell RS Biochem Biophys Res Commun; 1974 Jan; 56(2):415-22. PubMed ID: 4823874 [No Abstract] [Full Text] [Related]
10. [Electrophoresis of chloride ions and changes in the membrane potential of energized mitochondria]. Antonov VF; Ivanov AS Biofizika; 1975; 20(4):642-5. PubMed ID: 1201298 [TBL] [Abstract][Full Text] [Related]
11. Structural and chemical requirements for hydroxychlorobiphenyls to uncouple rat liver mitochondria and potentiation of uncoupling with aroclor 1254. Ebner KV; Braselton WE Chem Biol Interact; 1987; 63(2):139-55. PubMed ID: 3117385 [TBL] [Abstract][Full Text] [Related]
12. Liver mitochondrial pyrophosphate concentration is increased by Ca2+ and regulates the intramitochondrial volume and adenine nucleotide content. Davidson AM; Halestrap AP Biochem J; 1987 Sep; 246(3):715-23. PubMed ID: 2825649 [TBL] [Abstract][Full Text] [Related]
13. Competitive inhibition of valinomycin-induced K+-transport by Mg2+-ions in liver mitochondria. Ligeti E; Fonyó A FEBS Lett; 1977 Jul; 79(1):33-6. PubMed ID: 891931 [No Abstract] [Full Text] [Related]
14. Action of propranolol on mitochondrial functions--effects on energized ion fluxes in the presence of valinomycin. Järvisalo J; Saris NE Biochem Pharmacol; 1975 Sep; 24(18):1701-5. PubMed ID: 13 [No Abstract] [Full Text] [Related]
15. Regulation of the mitochondrial matrix volume in vivo and in vitro. The role of calcium. Halestrap AP; Quinlan PT; Whipps DE; Armston AE Biochem J; 1986 Jun; 236(3):779-87. PubMed ID: 2431681 [TBL] [Abstract][Full Text] [Related]
16. The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration. Teplova VV; Mikkola R; Tonshin AA; Saris NE; Salkinoja-Salonen MS Toxicol Appl Pharmacol; 2006 Jan; 210(1-2):39-46. PubMed ID: 16039680 [TBL] [Abstract][Full Text] [Related]
17. Model translocators for divalent and monovalent ion transport in phospholipid membranes. II. The effects of ion translocator X-537A on the energy-conserving properties of mitochondrial membranes. Estrada S; Célis H; Calderón E; Gallo G; Montal M J Membr Biol; 1974; 18(3-4):201-18. PubMed ID: 4278782 [No Abstract] [Full Text] [Related]
18. On the mechanism of regulation of the mitochondrial K+/H+ exchanger. Garlid KD J Biol Chem; 1980 Dec; 255(23):11273-9. PubMed ID: 7440541 [No Abstract] [Full Text] [Related]
19. Biochemical effects of the hypoglycaemic compound diphenyleneiodonnium. Catalysis of anion-hydroxyl ion exchange across the inner membrane of rat liver mitochondria and effects on oxygen uptake. Holland PC; Sherratt HS Biochem J; 1972 Aug; 129(1):39-54. PubMed ID: 4265024 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of active shrinkage in mitochondria. II. Coupling between strong electrolyte fluxes. Azzone GF; Massair S; Pozzan T Biochim Biophys Acta; 1976 Jan; 423(1):27-41. PubMed ID: 2314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]