These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32434072)

  • 1. Plant Nutrition for Human Nutrition: Hints from Rice Research and Future Perspectives.
    Huang S; Wang P; Yamaji N; Ma JF
    Mol Plant; 2020 Jun; 13(6):825-835. PubMed ID: 32434072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transporters involved in mineral nutrient uptake in rice.
    Sasaki A; Yamaji N; Ma JF
    J Exp Bot; 2016 Jun; 67(12):3645-53. PubMed ID: 26931170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc transport in rice: how to balance optimal plant requirements and human nutrition.
    Huang S; Yamaji N; Feng Ma J
    J Exp Bot; 2022 Mar; 73(6):1800-1808. PubMed ID: 34727182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The node, a hub for mineral nutrient distribution in graminaceous plants.
    Yamaji N; Ma JF
    Trends Plant Sci; 2014 Sep; 19(9):556-63. PubMed ID: 24953837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine.
    White PJ; Broadley MR
    New Phytol; 2009; 182(1):49-84. PubMed ID: 19192191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in arsenic metabolism in plants: current status, challenges and highlighted biotechnological intervention to reduce grain arsenic in rice.
    Shri M; Singh PK; Kidwai M; Gautam N; Dubey S; Verma G; Chakrabarty D
    Metallomics; 2019 Mar; 11(3):519-532. PubMed ID: 30672944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elemental composition of Malawian rice.
    Joy EJM; Louise Ander E; Broadley MR; Young SD; Chilimba ADC; Hamilton EM; Watts MJ
    Environ Geochem Health; 2017 Aug; 39(4):835-845. PubMed ID: 27438079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The road to micronutrient biofortification of rice: progress and prospects.
    Bashir K; Takahashi R; Nakanishi H; Nishizawa NK
    Front Plant Sci; 2013; 4():15. PubMed ID: 23404425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of arsenic with nutrient elements in rice plants.
    Duan G; Liu W; Chen X; Hu Y; Zhu Y
    Metallomics; 2013 Jun; 5(7):784-92. PubMed ID: 23771154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioimaging of multiple elements by high-resolution LA-ICP-MS reveals altered distribution of mineral elements in the nodes of rice mutants.
    Yamaji N; Ma JF
    Plant J; 2019 Sep; 99(6):1254-1263. PubMed ID: 31108003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient accumulation and transcriptome patterns during grain development in rice.
    Ren ZW; Kopittke PM; Zhao FJ; Wang P
    J Exp Bot; 2023 Feb; 74(3):909-930. PubMed ID: 36272142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and flexible uptake system for mineral elements in plants.
    Che J; Yamaji N; Ma JF
    New Phytol; 2018 Jul; 219(2):513-517. PubMed ID: 29633285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant nutrition for sustainable development and global health.
    White PJ; Brown PH
    Ann Bot; 2010 Jun; 105(7):1073-80. PubMed ID: 20430785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review.
    Saifullah ; Dahlawi S; Naeem A; Iqbal M; Farooq MA; Bibi S; Rengel Z
    Chemosphere; 2018 Mar; 194():171-188. PubMed ID: 29202269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moving toward a precise nutrition: preferential loading of seeds with essential nutrients over non-essential toxic elements.
    Khan MA; Castro-Guerrero N; Mendoza-Cozatl DG
    Front Plant Sci; 2014; 5():51. PubMed ID: 24600463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health.
    Khanam R; Kumar A; Nayak AK; Shahid M; Tripathi R; Vijayakumar S; Bhaduri D; Kumar U; Mohanty S; Panneerselvam P; Chatterjee D; Satapathy BS; Pathak H
    Sci Total Environ; 2020 Jan; 699():134330. PubMed ID: 31522043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastic transport systems of rice for mineral elements in response to diverse soil environmental changes.
    Wang P; Yamaji N; Inoue K; Mochida K; Ma JF
    New Phytol; 2020 Apr; 226(1):156-169. PubMed ID: 31758804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in breeding for trace minerals in staple crops.
    Gregorio GB
    J Nutr; 2002 Mar; 132(3):500S-502S. PubMed ID: 11880579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain.
    Huang XY; Deng F; Yamaji N; Pinson SR; Fujii-Kashino M; Danku J; Douglas A; Guerinot ML; Salt DE; Ma JF
    Nat Commun; 2016 Jul; 7():12138. PubMed ID: 27387148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofortification of essential nutritional compounds and trace elements in rice and cassava.
    Sautter C; Poletti S; Zhang P; Gruissem W
    Proc Nutr Soc; 2006 May; 65(2):153-9. PubMed ID: 16672076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.