These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32434160)

  • 41. Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures.
    Amann E; Wolff P; Breel E; van Griensven M; Balmayor ER
    Acta Biomater; 2017 Apr; 52():130-144. PubMed ID: 28131943
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An Injectable Hydrogel Scaffold With Kartogenin-Encapsulated Nanoparticles for Porcine Cartilage Regeneration: A 12-Month Follow-up Study.
    Yan W; Xu X; Xu Q; Sun Z; Lv Z; Wu R; Yan W; Jiang Q; Shi D
    Am J Sports Med; 2020 Nov; 48(13):3233-3244. PubMed ID: 33026830
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Autologous nasal chondrocytes delivered by injectable hydrogel for in vivo articular cartilage regeneration.
    Chen W; Li C; Peng M; Xie B; Zhang L; Tang X
    Cell Tissue Bank; 2018 Mar; 19(1):35-46. PubMed ID: 28815373
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization and application of size-sorted zonal chondrocytes for articular cartilage regeneration.
    Yin L; Wu Y; Yang Z; Denslin V; Ren X; Tee CA; Lai Z; Lim CT; Han J; Lee EH
    Biomaterials; 2018 May; 165():66-78. PubMed ID: 29518707
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3.
    Schneider MC; Chu S; Randolph MA; Bryant SJ
    Acta Biomater; 2019 Jul; 93():97-110. PubMed ID: 30914256
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites.
    Schipani R; Scheurer S; Florentin R; Critchley SE; Kelly DJ
    Biofabrication; 2020 May; 12(3):035011. PubMed ID: 32252045
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells].
    ; Zhang YJ; Li JJ; Yao B; Song W; Huang S; Fu XB
    Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1013-1023. PubMed ID: 33238684
    [No Abstract]   [Full Text] [Related]  

  • 49. Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs.
    Mouser VHM; Levato R; Mensinga A; Dhert WJA; Gawlitta D; Malda J
    Connect Tissue Res; 2020 Mar; 61(2):137-151. PubMed ID: 30526130
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient.
    Ren X; Wang F; Chen C; Gong X; Yin L; Yang L
    BMC Musculoskelet Disord; 2016 Jul; 17():301. PubMed ID: 27439428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting.
    You F; Chen X; Cooper DML; Chang T; Eames BF
    Biofabrication; 2018 Dec; 11(1):015015. PubMed ID: 30524110
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Zone-specific integrated cartilage repair using a scaffold-free tissue engineered construct derived from allogenic synovial mesenchymal stem cells: Biomechanical and histological assessments.
    Fujie H; Nansai R; Ando W; Shimomura K; Moriguchi Y; Hart DA; Nakamura N
    J Biomech; 2015 Nov; 48(15):4101-4108. PubMed ID: 26549765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lyophilized Scaffolds Fabricated from 3D-Printed Photocurable Natural Hydrogel for Cartilage Regeneration.
    Xia H; Zhao D; Zhu H; Hua Y; Xiao K; Xu Y; Liu Y; Chen W; Liu Y; Zhang W; Liu W; Tang S; Cao Y; Wang X; Chen HH; Zhou G
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31704-31715. PubMed ID: 30157627
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of Undifferentiated Versus Chondrogenic Predifferentiated Mesenchymal Stem Cells Derived From Human Umbilical Cord Blood for Cartilage Repair in a Rat Model.
    Park YB; Ha CW; Kim JA; Kim S; Park YG
    Am J Sports Med; 2019 Feb; 47(2):451-461. PubMed ID: 30640523
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask.
    Song K; Li W; Wang H; Zhang Y; Li L; Wang Y; Wang H; Wang L; Liu T
    Biomed Mater; 2016 Oct; 11(6):065002. PubMed ID: 27767021
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Facilitating In Vivo Articular Cartilage Repair by Tissue-Engineered Cartilage Grafts Produced From Auricular Chondrocytes.
    Wong CC; Chen CH; Chiu LH; Tsuang YH; Bai MY; Chung RJ; Lin YH; Hsieh FJ; Chen YT; Yang TL
    Am J Sports Med; 2018 Mar; 46(3):713-727. PubMed ID: 29211970
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration.
    Li Z; Wu N; Cheng J; Sun M; Yang P; Zhao F; Zhang J; Duan X; Fu X; Zhang J; Hu X; Chen H; Ao Y
    Theranostics; 2020; 10(11):5090-5106. PubMed ID: 32308770
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs.
    Levett PA; Hutmacher DW; Malda J; Klein TJ
    PLoS One; 2014; 9(12):e113216. PubMed ID: 25438040
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs.
    Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J
    Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Repair of porcine articular cartilage defect with a biphasic osteochondral composite.
    Jiang CC; Chiang H; Liao CJ; Lin YJ; Kuo TF; Shieh CS; Huang YY; Tuan RS
    J Orthop Res; 2007 Oct; 25(10):1277-90. PubMed ID: 17576624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.