These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 32434546)
21. Roles of RubisCO and the RubisCO-like protein in 5-methylthioadenosine metabolism in the Nonsulfur purple bacterium Rhodospirillum rubrum. Singh J; Tabita FR J Bacteriol; 2010 Mar; 192(5):1324-31. PubMed ID: 20038587 [TBL] [Abstract][Full Text] [Related]
22. Fixation of CO Bill N; Tomasch J; Riemer A; Müller K; Kleist S; Schmidt-Hohagen K; Wagner-Döbler I; Schomburg D Environ Microbiol; 2017 Jul; 19(7):2645-2660. PubMed ID: 28371065 [TBL] [Abstract][Full Text] [Related]
23. Pathway of butyrate catabolism by Desulfobacterium cetonicum. Janssen PH; Schink B J Bacteriol; 1995 Jul; 177(13):3870-2. PubMed ID: 7601855 [TBL] [Abstract][Full Text] [Related]
24. L-malyl-coenzyme A/beta-methylmalyl-coenzyme A lyase is involved in acetate assimilation of the isocitrate lyase-negative bacterium Rhodobacter capsulatus. Meister M; Saum S; Alber BE; Fuchs G J Bacteriol; 2005 Feb; 187(4):1415-25. PubMed ID: 15687206 [TBL] [Abstract][Full Text] [Related]
25. Transcriptional Regulation by the Short-Chain Fatty Acyl Coenzyme A Regulator (ScfR) PccR Controls Propionyl Coenzyme A Assimilation by Rhodobacter sphaeroides. Carter MS; Alber BE J Bacteriol; 2015 Oct; 197(19):3048-56. PubMed ID: 26170412 [TBL] [Abstract][Full Text] [Related]
26. Calvin cycle mutants of photoheterotrophic purple nonsulfur bacteria fail to grow due to an electron imbalance rather than toxic metabolite accumulation. Gordon GC; McKinlay JB J Bacteriol; 2014 Mar; 196(6):1231-7. PubMed ID: 24415727 [TBL] [Abstract][Full Text] [Related]
27. The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate. Schneider K; Peyraud R; Kiefer P; Christen P; Delmotte N; Massou S; Portais JC; Vorholt JA J Biol Chem; 2012 Jan; 287(1):757-766. PubMed ID: 22105076 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from unrelated carbon sources in engineered Rhodospirillum rubrum. Heinrich D; Raberg M; Steinbüchel A FEMS Microbiol Lett; 2015 Apr; 362(8):fnv038. PubMed ID: 25761750 [TBL] [Abstract][Full Text] [Related]
30. A novel class of CoA-transferase involved in short-chain fatty acid metabolism in butyrate-producing human colonic bacteria. Charrier C; Duncan GJ; Reid MD; Rucklidge GJ; Henderson D; Young P; Russell VJ; Aminov RI; Flint HJ; Louis P Microbiology (Reading); 2006 Jan; 152(Pt 1):179-185. PubMed ID: 16385128 [TBL] [Abstract][Full Text] [Related]
31. Diazotrophic growth of Rhodospirillum rubrum with 2-oxoglutarate as sole carbon source affects regulation of nitrogen metabolism as well as the soluble proteome. Teixeira PF; Selao TT; Henriksson V; Wang H; Norén A; Nordlund S Res Microbiol; 2010 Oct; 161(8):651-9. PubMed ID: 20600859 [TBL] [Abstract][Full Text] [Related]
32. Analysis of the Butyrate-Producing Pathway in Porphyromonas gingivalis. Yoshida Y Methods Mol Biol; 2021; 2210():167-172. PubMed ID: 32815137 [TBL] [Abstract][Full Text] [Related]
33. Propionate formation in Rhodospirillum rubrum under anaerobic dark conditions. Voelskow H; Schön G Z Allg Mikrobiol; 1981; 21(7):545-53. PubMed ID: 6798770 [TBL] [Abstract][Full Text] [Related]
34. (2S)-Methylsuccinyl-CoA dehydrogenase closes the ethylmalonyl-CoA pathway for acetyl-CoA assimilation. Erb TJ; Fuchs G; Alber BE Mol Microbiol; 2009 Sep; 73(6):992-1008. PubMed ID: 19703103 [TBL] [Abstract][Full Text] [Related]
35. In Vivo Studies in Rhodospirillum rubrum Indicate That Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Catalyzes Two Obligatorily Required and Physiologically Significant Reactions for Distinct Carbon and Sulfur Metabolic Pathways. Dey S; North JA; Sriram J; Evans BS; Tabita FR J Biol Chem; 2015 Dec; 290(52):30658-68. PubMed ID: 26511314 [TBL] [Abstract][Full Text] [Related]
36. Acyl-CoA reductase PGN_0723 utilizes succinyl-CoA to generate succinate semialdehyde in a butyrate-producing pathway of Porphyromonas gingivalis. Yoshida Y; Sato M; Kezuka Y; Hasegawa Y; Nagano K; Takebe J; Yoshimura F Arch Biochem Biophys; 2016 Apr; 596():138-48. PubMed ID: 27013206 [TBL] [Abstract][Full Text] [Related]
37. Shotgun proteome analysis of Rhodospirillum rubrum S1H: integrating data from gel-free and gel-based peptides fractionation methods. Mastroleo F; Leroy B; Van Houdt R; s' Heeren C; Mergeay M; Hendrickx L; Wattiez R J Proteome Res; 2009 May; 8(5):2530-41. PubMed ID: 19243122 [TBL] [Abstract][Full Text] [Related]
38. Butyrate metabolism upstream and downstream acetyl-CoA synthesis and growth control of human colon carcinoma cells. Leschelle X; Delpal S; Goubern M; Blottière HM; Blachier F Eur J Biochem; 2000 Nov; 267(21):6435-42. PubMed ID: 11029587 [TBL] [Abstract][Full Text] [Related]
39. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum. Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812 [TBL] [Abstract][Full Text] [Related]
40. Proteomics unveil a central role for peroxisomes in butyrate assimilation of the heterotrophic Chlorophyte alga Lacroux J; Atteia A; Brugière S; Couté Y; Vallon O; Steyer JP; van Lis R Front Microbiol; 2022; 13():1029828. PubMed ID: 36353459 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]