These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32435271)

  • 1. Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level.
    Jin S; Su Y; Song S; Xu K; Hu T; Yang Q; Wu F; Xu G; Ma Q; Guan H; Pang S; Li Y; Guo Q
    Plant Methods; 2020; 16():69. PubMed ID: 32435271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms.
    Jin S; Su Y; Gao S; Wu F; Hu T; Liu J; Li W; Wang D; Chen S; Jiang Y; Pang S; Guo Q
    Front Plant Sci; 2018; 9():866. PubMed ID: 29988466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating maize phenotype dynamics under drought stress using terrestrial lidar.
    Su Y; Wu F; Ao Z; Jin S; Qin F; Liu B; Pang S; Liu L; Guo Q
    Plant Methods; 2019; 15():11. PubMed ID: 30740137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of maize above-ground biomass based on stem-leaf separation strategy integrated with LiDAR and optical remote sensing data.
    Zhu Y; Zhao C; Yang H; Yang G; Han L; Li Z; Feng H; Xu B; Wu J; Lei L
    PeerJ; 2019; 7():e7593. PubMed ID: 31576235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].
    Liu F; Tan C; Lei PF
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3229-36. PubMed ID: 25898621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on Estimating Rice Canopy Height and LAI Based on LiDAR Data.
    Jing L; Wei X; Song Q; Wang F
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total and component forest aboveground biomass inversion via LiDAR-derived features and machine learning algorithms.
    Ma J; Zhang W; Ji Y; Huang J; Huang G; Wang L
    Front Plant Sci; 2023; 14():1258521. PubMed ID: 37954998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping.
    Nguyen C; Sagan V; Bhadra S; Moose S
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the fraction of absorbed photosynthetically active radiation (fPAR) in maize canopies using LiDAR data and hyperspectral imagery.
    Qin H; Wang C; Zhao K; Xi X
    PLoS One; 2018; 13(5):e0197510. PubMed ID: 29813094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating Biomass and Canopy Height With LiDAR for Field Crop Breeding.
    Walter JDC; Edwards J; McDonald G; Kuchel H
    Front Plant Sci; 2019; 10():1145. PubMed ID: 31611889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest.
    Levick SR; Hessenmöller D; Schulze ED
    Carbon Balance Manag; 2016 Dec; 11(1):7. PubMed ID: 27330548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Tropical Forest Structure Using a Terrestrial Lidar.
    Palace M; Sullivan FB; Ducey M; Herrick C
    PLoS One; 2016; 11(4):e0154115. PubMed ID: 27124295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating above-ground biomass of subtropical forest using airborne LiDAR in Hong Kong.
    Chan EPY; Fung T; Wong FKK
    Sci Rep; 2021 Jan; 11(1):1751. PubMed ID: 33462354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating leaf area index of maize using UAV-based digital imagery and machine learning methods.
    Du L; Yang H; Song X; Wei N; Yu C; Wang W; Zhao Y
    Sci Rep; 2022 Sep; 12(1):15937. PubMed ID: 36153395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Support vector regression for high-resolution beach surface moisture estimation from terrestrial LiDAR intensity data.
    Jin J; Verbeurgt J; De Sloover L; Stal C; Deruyter G; Montreuil AL; Vos S; De Maeyer P; De Wulf A
    Int J Appl Earth Obs Geoinf; 2021 Oct; 102():102458. PubMed ID: 35125982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction and analysis of a deciduous sapling using digital photographs or terrestrial-LiDAR technology.
    Delagrange S; Rochon P
    Ann Bot; 2011 Oct; 108(6):991-1000. PubMed ID: 21515607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.
    Jimenez-Berni JA; Deery DM; Rozas-Larraondo P; Condon ATG; Rebetzke GJ; James RA; Bovill WD; Furbank RT; Sirault XRR
    Front Plant Sci; 2018; 9():237. PubMed ID: 29535749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.
    Luo S; Chen JM; Wang C; Xi X; Zeng H; Peng D; Li D
    Opt Express; 2016 May; 24(11):11578-93. PubMed ID: 27410085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China.
    Jiang F; Deng M; Tang J; Fu L; Sun H
    Carbon Balance Manag; 2022 Sep; 17(1):12. PubMed ID: 36048352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UAV hyperspectral combined with LiDAR to estimate chlorophyll content at the stand and individual tree scales.
    Yang T; Yu Y; Yang XG; DU HX
    Ying Yong Sheng Tai Xue Bao; 2023 Aug; 34(8):2101-2112. PubMed ID: 37681374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.