These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32436374)

  • 1. Gate Spacer Investigation for Improving the Speed of High-Frequency Carbon Nanotube-Based Field-Effect Transistors.
    Hartmann M; Tittmann-Otto J; Böttger S; Heldt G; Claus M; Schulz SE; Schröter M; Hermann S
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27461-27466. PubMed ID: 32436374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz.
    Zhong D; Shi H; Ding L; Zhao C; Liu J; Zhou J; Zhang Z; Peng LM
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42496-42503. PubMed ID: 31618003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Carbon Nanotube-Based Radiofrequency Field-Effect Transistors by the Device Architecture and Doping Process.
    Ren L; Zhou J; Pan Z; Li H; Ding L; Zhang Z; Peng LM
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12813-12820. PubMed ID: 38412248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length?
    Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering.
    Ding L; Wang Z; Pei T; Zhang Z; Wang S; Xu H; Peng F; Li Y; Peng LM
    ACS Nano; 2011 Apr; 5(4):2512-9. PubMed ID: 21370813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.
    Brady GJ; Way AJ; Safron NS; Evensen HT; Gopalan P; Arnold MS
    Sci Adv; 2016 Sep; 2(9):e1601240. PubMed ID: 27617293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio.
    Qiu C; Zhang Z; Zhong D; Si J; Yang Y; Peng LM
    ACS Nano; 2015 Jan; 9(1):969-77. PubMed ID: 25545108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes.
    Wang C; Badmaev A; Jooyaie A; Bao M; Wang KL; Galatsis K; Zhou C
    ACS Nano; 2011 May; 5(5):4169-76. PubMed ID: 21517104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Speed Planar GaAs Nanowire Arrays with fmax > 75 GHz by Wafer-Scale Bottom-up Growth.
    Miao X; Chabak K; Zhang C; Mohseni PK; Walker D; Li X
    Nano Lett; 2015 May; 15(5):2780-6. PubMed ID: 25494481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing Gamma-Ray Irradiation Effects on Carbon Nanotube Top-Gated Field-Effect Transistors.
    Zhu M; Zhou J; Sun P; Peng LM; Zhang Z
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47756-47763. PubMed ID: 34581560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gate Capacitance Coupling of Double-Gate Carbon Nanotube Network Transistors.
    An Y; Lee H; Ko J; Yang HI; Min G; Kim DM; Kim DH; Bae JH; Kang MH; Choi SJ
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6221-6227. PubMed ID: 38270589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays.
    Liu C; Cao Y; Wang B; Zhang Z; Lin Y; Xu L; Yang Y; Jin C; Peng LM; Zhang Z
    ACS Nano; 2022 Dec; 16(12):21482-21490. PubMed ID: 36416375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ku-Band Mixers Based on Random-Oriented Carbon Nanotube Films.
    Chang M; Qian J; Li Z; Cheng X; Wang Y; Fan L; Cao J; Ding L
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large signal operation of small band-gap carbon nanotube-based ambipolar transistor: a high-performance frequency doubler.
    Wang Z; Ding L; Pei T; Zhang Z; Wang S; Yu T; Ye X; Peng F; Li Y; Peng LM
    Nano Lett; 2010 Sep; 10(9):3648-55. PubMed ID: 20677775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wafer-level hysteresis-free resonant carbon nanotube transistors.
    Cao J; Bartsch ST; Ionescu AM
    ACS Nano; 2015 Mar; 9(3):2836-42. PubMed ID: 25752991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Double-Gate Carbon Nanotube FET Characteristics for Short Channel Devices.
    Moorthy VM; Venkatesan R; Srivastava VM
    Recent Pat Nanotechnol; 2023 Sep; ():. PubMed ID: 37904555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor.
    Lee D; Lee BH; Yoon J; Ahn DC; Park JY; Hur J; Kim MS; Jeon SB; Kang MH; Kim K; Lim M; Choi SJ; Choi YK
    ACS Nano; 2016 Dec; 10(12):10894-10900. PubMed ID: 28024320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling of N-Type Field-Effect Transistors Based on Aligned Carbon Nanotube Arrays.
    Liu C; Cao Y; Lu H; Lin Y; Jin C; Zhang Z
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39356653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A carbon nanotube gated carbon nanotube transistor with 5 ps gate delay.
    Svensson J; Tarakanov Y; Lee DS; Kinaret JM; Park YW; Campbell EE
    Nanotechnology; 2008 Aug; 19(32):325201. PubMed ID: 21828807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general approach for high yield fabrication of CMOS-compatible all-semiconducting carbon nanotube field effect transistors.
    Islam MR; Kormondy KJ; Silbar E; Khondaker SI
    Nanotechnology; 2012 Mar; 23(12):125201. PubMed ID: 22398179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.