BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32436498)

  • 1. A novel strategy for rhodamine B-based fluorescent probes with a selective glutathione response for bioimaging in living cells.
    Li Z; Xiong W; He X; Qi X; Ding F; Shen J
    Analyst; 2020 Jun; 145(12):4239-4244. PubMed ID: 32436498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and evaluation of a novel 'off-on' chemical sensor based on rhodamine B and the 2,5-pyrrolidinedione moiety for selective discrimination of glutathione and its bioimaging in living cells.
    Xue Z; Xiao L; Chen H; Zhou T; Qian Y; Suo J; Hua Q; Zhou B; Ye R; Bao X; Zhu J
    Bioorg Med Chem; 2018 May; 26(8):1823-1831. PubMed ID: 29500129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel polysiloxane-based rhodamine B fluorescent probe for selectively detection of Al
    Yang T; Zuo Y; Zhang Y; Gou Z; Lin W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():207-213. PubMed ID: 30901706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-binding pyridine and rhodamine B conjugate derivatives as fluorescent chemosensors for ferric ions in aqueous media and living cells.
    Song F; Yang C; Liu H; Gao Z; Zhu J; Bao X; Kan C
    Analyst; 2019 Apr; 144(9):3094-3102. PubMed ID: 30920566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel turn-on fluorescent probe for selective sensing and imaging of glutathione in live cells and organisms.
    Zhang X; Wang Z; Guo Z; He N; Liu P; Xia D; Yan X; Zhang Z
    Analyst; 2019 May; 144(10):3260-3266. PubMed ID: 30982838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding Reaction Sites to Polysiloxanes: Unique Fluorescent Probe for Reversible Detection of ClO
    Zuo Y; Zhang Y; Dong B; Gou Z; Yang T; Lin W
    Anal Chem; 2019 Feb; 91(3):1719-1723. PubMed ID: 30645092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive fluorescent ratio imaging probe for the detection of glutathione ultratrace change in mitochondria of cancer cells.
    Zhang H; Wang C; Wang K; Xuan X; Lv Q; Jiang K
    Biosens Bioelectron; 2016 Nov; 85():96-102. PubMed ID: 27156018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step synthesis of rhodamine-based Fe
    Zhang M; Shen C; Jia T; Qiu J; Zhu H; Gao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 231():118105. PubMed ID: 32006914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A thiophen-thiooxorhodamine conjugate fluorescent probe for detecting mercury in aqueous media and living cells.
    Zhou Y; You XY; Fang Y; Li JY; Liu K; Yao C
    Org Biomol Chem; 2010 Nov; 8(21):4819-22. PubMed ID: 20859604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rhodamine based fluorescent probe for Hg2+ and its application to cellular imaging.
    Yan F; Cao D; Yang N; Wang M; Dai L; Li C; Chen L
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():19-24. PubMed ID: 23353763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly sensitive two-photon fluorescent probe for glutathione with near-infrared emission at 719 nm and intracellular glutathione imaging.
    Huang C; Qian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():68-76. PubMed ID: 30927573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Naphthalimide-based fluorescent probe for selectively and specifically detecting glutathione in the lysosomes of living cells.
    Cao M; Chen H; Chen D; Xu Z; Liu SH; Chen X; Yin J
    Chem Commun (Camb); 2016 Jan; 52(4):721-4. PubMed ID: 26576682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rhodamine-triazole fluorescent chemodosimeter for Cu
    Wechakorn K; Prabpai S; Suksen K; Kanjanasirirat P; Pewkliang Y; Borwornpinyo S; Kongsaeree P
    Luminescence; 2018 Feb; 33(1):64-70. PubMed ID: 29327432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Indole-Trizole-Rhodamine Triad as Ratiometric Fluorescent Probe for Nanomolar-Concentration Level Hg(2+) Sensing with High Selectivity.
    Liu H; Ding H; Zhu L; Wang Y; Chen Z; Tian Z
    J Fluoresc; 2015 Sep; 25(5):1259-66. PubMed ID: 26179076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel fluorescent probe for Cr(3+) based on rhodamine-crown ether conjugate and its application to drinking water examination and bioimaging.
    Diao Q; Ma P; Lv L; Li T; Wang X; Song D
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():15-21. PubMed ID: 26641281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly sensitive and selective fluorescent probe for trivalent aluminum ion based on rhodamine derivative in living cells.
    Tang JL; Li CY; Li YF; Lu X; Qi HR
    Anal Chim Acta; 2015 Aug; 888():155-61. PubMed ID: 26320971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spirolactone and spirothiolactone rhodamine-pyrene probes for detection of Hg²⁺ with different sensing properties and its application in living cells.
    Rui QQ; Zhou Y; Fang Y; Yao C
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr; 159():209-18. PubMed ID: 26851489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A peptide-based fluorescent sensor for selective imaging of glutathione in living cells and zebrafish.
    Li Y; Di C; Wu J; Si J; Chen Y; Zhang H; Ge Y; Liu D; Liu W
    Anal Bioanal Chem; 2020 Jan; 412(2):481-488. PubMed ID: 31728594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a near-infrared ratiometric fluorescent probe for glutathione using an intramolecular charge transfer signaling mechanism and its bioimaging application in living cells.
    Zhou Y; Zhang L; Zhang X; Zhu ZJ
    J Mater Chem B; 2019 Feb; 7(5):809-814. PubMed ID: 32254855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodamine-based "turn-on" fluorescent probe with high selectivity for Fe(2+) imaging in living cells.
    Hou GG; Wang CH; Sun JF; Yang MZ; Lin D; Li HJ
    Biochem Biophys Res Commun; 2013 Oct; 439(4):459-63. PubMed ID: 24025683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.