These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32436712)

  • 1. Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns.
    Celiksoy S; Ye W; Wandner K; Schlapp F; Kaefer K; Ahijado-Guzmán R; Sönnichsen C
    J Phys Chem Lett; 2020 Jun; 11(12):4554-4558. PubMed ID: 32436712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Particle Plasmon Sensors as Label-Free Technique To Monitor MinDE Protein Wave Propagation on Membranes.
    Lambertz C; Martos A; Henkel A; Neiser A; Kliesch TT; Janshoff A; Schwille P; Sönnichsen C
    Nano Lett; 2016 Jun; 16(6):3540-4. PubMed ID: 27172130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass-sensitive particle tracking to elucidate the membrane-associated MinDE reaction cycle.
    Heermann T; Steiert F; Ramm B; Hundt N; Schwille P
    Nat Methods; 2021 Oct; 18(10):1239-1246. PubMed ID: 34608318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Equilibrium Large-Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles.
    Fu M; Franquelim HG; Kretschmer S; Schwille P
    Angew Chem Int Ed Engl; 2021 Mar; 60(12):6496-6502. PubMed ID: 33285025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial control of the cell division site by the Min system in Escherichia coli.
    Shih YL; Zheng M
    Environ Microbiol; 2013 Dec; 15(12):3229-39. PubMed ID: 23574354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictions from a stochastic polymer model for the MinDE protein dynamics in Escherichia coli.
    Borowski P; Cytrynbaum EN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041916. PubMed ID: 19905351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks.
    Mateos-Gil P; Márquez I; López-Navajas P; Jiménez M; Vicente M; Mingorance J; Rivas G; Vélez M
    Biochim Biophys Acta; 2012 Mar; 1818(3):806-13. PubMed ID: 22198391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers.
    Lolicato F; Joly L; Martinez-Seara H; Fragneto G; Scoppola E; Baldelli Bombelli F; Vattulainen I; Akola J; Maccarini M
    Small; 2019 Jun; 15(23):e1805046. PubMed ID: 31012268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peripheral Membrane Proteins Facilitate Nanoparticle Binding at Lipid Bilayer Interfaces.
    Melby ES; Allen C; Foreman-Ortiz IU; Caudill ER; Kuech TR; Vartanian AM; Zhang X; Murphy CJ; Hernandez R; Pedersen JA
    Langmuir; 2018 Sep; 34(36):10793-10805. PubMed ID: 30102857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multistranded polymer model explains MinDE dynamics in E. coli cell division.
    Cytrynbaum EN; Marshall BD
    Biophys J; 2007 Aug; 93(4):1134-50. PubMed ID: 17483175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence quenching by lipid encased nanoparticles shows that amyloid-β has a preferred orientation in the membrane.
    Chandra B; Maity BK; Das A; Maiti S
    Chem Commun (Camb); 2018 Jul; 54(56):7750-7753. PubMed ID: 29854995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Min-protein oscillations in Escherichia coli with spontaneous formation of two-stranded filaments in a three-dimensional stochastic reaction-diffusion model.
    Pavin N; Paljetak HC; Krstić V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021904. PubMed ID: 16605359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing MinD's Membrane Affinity Yields Standing Wave Oscillations and Functional Gradients on Flat Membranes.
    Kretschmer S; Heermann T; Tassinari A; Glock P; Schwille P
    ACS Synth Biol; 2021 May; 10(5):939-949. PubMed ID: 33881306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monovalent and Oriented Labeling of Gold Nanoprobes for the High-Resolution Tracking of a Single-Membrane Molecule.
    Liao YH; Lin CH; Cheng CY; Wong WC; Juo JY; Hsieh CL
    ACS Nano; 2019 Oct; 13(10):10918-10928. PubMed ID: 31259529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The MinDE system is a generic spatial cue for membrane protein distribution in vitro.
    Ramm B; Glock P; Mücksch J; Blumhardt P; García-Soriano DA; Heymann M; Schwille P
    Nat Commun; 2018 Sep; 9(1):3942. PubMed ID: 30258191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping out Min protein patterns in fully confined fluidic chambers.
    Caspi Y; Dekker C
    Elife; 2016 Nov; 5():. PubMed ID: 27885986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of signal peptidase by phospholipids in membrane: characterization of phospholipid bilayer incorporated Escherichia coli signal peptidase.
    Wang Y; Bruckner R; Stein RL
    Biochemistry; 2004 Jan; 43(1):265-70. PubMed ID: 14705954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation of MinCDE waves on free-standing membranes.
    Martos A; Petrasek Z; Schwille P
    Environ Microbiol; 2013 Dec; 15(12):3319-26. PubMed ID: 24118679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobility of Min-proteins in Escherichia coli measured by fluorescence correlation spectroscopy.
    Meacci G; Ries J; Fischer-Friedrich E; Kahya N; Schwille P; Kruse K
    Phys Biol; 2006 Nov; 3(4):255-63. PubMed ID: 17200601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Speed Atomic Force Microscopy Reveals the Inner Workings of the MinDE Protein Oscillator.
    Miyagi A; Ramm B; Schwille P; Scheuring S
    Nano Lett; 2018 Jan; 18(1):288-296. PubMed ID: 29210266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.