These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32436815)

  • 1. Conjugating heparin, Arg-Glu-Asp-Val peptide, and anti-CD34 to the silanic Mg-Zn-Y-Nd alloy for better endothelialization.
    Wu Y; Chang L; Li J; Wang L; Guan S
    J Biomater Appl; 2020 Aug; 35(2):158-168. PubMed ID: 32436815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials.
    Li JA; Chen L; Zhang XQ; Guan SK
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110607. PubMed ID: 32228927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A silk-based coating containing GREDVY peptide and heparin on Mg-Zn-Y-Nd alloy: improved corrosion resistance, hemocompatibility and endothelialization.
    Wang P; Xiong P; Liu J; Gao S; Xi T; Cheng Y
    J Mater Chem B; 2018 Feb; 6(6):966-978. PubMed ID: 32254377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fucoidan/collagen composite coating on magnesium alloy for better corrosion resistance and pro-endothelialization potential.
    Wang Y; Zhao Y; Wang X; Xie Y; Bai L; Guan S
    Int J Biol Macromol; 2024 Jan; 255():128044. PubMed ID: 37981269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and corrosion properties of as sub-rapid solidification Mg-Zn-Y-Nd alloy in dynamic simulated body fluid for vascular stent application.
    Wang J; Wang L; Guan S; Zhu S; Ren C; Hou S
    J Mater Sci Mater Med; 2010 Jul; 21(7):2001-8. PubMed ID: 20352299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly (ethylene glycol), fibronectin and heparin.
    Pan C; Hu Y; Hou Y; Liu T; Lin Y; Ye W; Hou Y; Gong T
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):438-449. PubMed ID: 27770914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc Ion-crosslinked polycarbonate/heparin composite coatings for biodegradable Zn-alloy stent applications.
    Pan K; Zhang W; Shi H; Dai M; Wei W; Liu X; Li X
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112725. PubMed ID: 35914466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced in Vitro and in Vivo Performance of Mg-Zn-Y-Nd Alloy Achieved with APTES Pretreatment for Drug-Eluting Vascular Stent Application.
    Liu J; Zheng B; Wang P; Wang X; Zhang B; Shi Q; Xi T; Chen M; Guan S
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17842-58. PubMed ID: 27331417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-immobilization of natural marine polysaccharides and bioactive peptides on ZE21B magnesium alloy to enhance hemocompatibility and cytocompatibility.
    Zhao Y; Wang Y; Chen L; Bai L; Guan S
    Int J Biol Macromol; 2024 Jun; 272(Pt 2):132747. PubMed ID: 38821301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layered double hydroxide/poly-dopamine composite coating with surface heparinization on Mg alloys: improved anticorrosion, endothelialization and hemocompatibility.
    Li H; Peng F; Wang D; Qiao Y; Xu D; Liu X
    Biomater Sci; 2018 Jun; 6(7):1846-1858. PubMed ID: 29789824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CO-releasing coating based on carboxymethyl chitosan-functionalized graphene oxide for improving the anticorrosion and biocompatibility of magnesium alloy stent materials.
    Pan C; Xu R; Chen J; Zhang Q; Deng L; Hong Q
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132487. PubMed ID: 38768910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An anti-CD34 antibody-functionalized clinical-grade POSS-PCU nanocomposite polymer for cardiovascular stent coating applications: a preliminary assessment of endothelial progenitor cell capture and hemocompatibility.
    Tan A; Goh D; Farhatnia Y; G N; Lim J; Teoh SH; Rajadas J; Alavijeh MS; Seifalian AM
    PLoS One; 2013; 8(10):e77112. PubMed ID: 24116210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys.
    Gao F; Hu Y; Gong Z; Liu T; Gong T; Liu S; Zhang C; Quan L; Kaveendran B; Pan C
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109947. PubMed ID: 31499970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy.
    Pan CJ; Hou Y; Wang YN; Gao F; Liu T; Hou YH; Zhu YF; Ye W; Wang LR
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():132-143. PubMed ID: 27287107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.
    Liu Y; Wu Y; Bian D; Gao S; Leeflang S; Guo H; Zheng Y; Zhou J
    Acta Biomater; 2017 Oct; 62():418-433. PubMed ID: 28823717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct surface modification of metallic biomaterials via tyrosine oxidation aiming to accelerate the re-endothelialization of vascular stents.
    Kakinoki S; Takasaki K; Mahara A; Ehashi T; Hirano Y; Yamaoka T
    J Biomed Mater Res A; 2018 Feb; 106(2):491-499. PubMed ID: 28975703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy.
    Wei Z; Tian P; Liu X; Zhou B
    Colloids Surf B Biointerfaces; 2014 Sep; 121():451-60. PubMed ID: 25009102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin-collagen multilayer.
    Lin Q; Ding X; Qiu F; Song X; Fu G; Ji J
    Biomaterials; 2010 May; 31(14):4017-25. PubMed ID: 20149438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of bioactive complex on the surface of magnesium alloy stent material to simultaneously improve anticorrosion, hemocompatibility and antibacterial activities.
    Pan C; Zhao Y; Yang Y; Yang M; Hong Q; Yang Z; Zhang Q
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111541. PubMed ID: 33360929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematical evolution on a Zn-Mg alloy potentially developed for biodegradable cardiovascular stents.
    Lin S; Ran X; Yan X; Wang Q; Zhou JG; Hu T; Wang G
    J Mater Sci Mater Med; 2019 Nov; 30(11):122. PubMed ID: 31677119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.