BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1518 related articles for article (PubMed ID: 32436931)

  • 21. Peroxidase-Mimicking Nanozyme with Enhanced Activity and High Stability Based on Metal-Support Interactions.
    Li Z; Yang X; Yang Y; Tan Y; He Y; Liu M; Liu X; Yuan Q
    Chemistry; 2018 Jan; 24(2):409-415. PubMed ID: 28991389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation Mechanism of ssDNA Aptamer in Nanozymes and Application of Nanozyme-Based Aptasensors in Food Safety.
    Wang L; Zhou H; Hu H; Wang Q; Chen X
    Foods; 2022 Feb; 11(4):. PubMed ID: 35206017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanozymes-Hitting the Biosensing "Target".
    Wu Y; Darland DC; Zhao JX
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional nanomaterials with unique enzyme-like characteristics for sensing applications.
    Song W; Zhao B; Wang C; Ozaki Y; Lu X
    J Mater Chem B; 2019 Feb; 7(6):850-875. PubMed ID: 32255092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme.
    Sun D; Lin X; Lu J; Wei P; Luo Z; Lu X; Chen Z; Zhang L
    Biosens Bioelectron; 2019 Oct; 142():111578. PubMed ID: 31422223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy.
    Zhang X; Li G; Wu D; Li X; Hu N; Chen J; Chen G; Wu Y
    Biosens Bioelectron; 2019 Jul; 137():178-198. PubMed ID: 31100598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal Nanozyme with Ester Hydrolysis Activity in the Presence of Ammonia-Borane and Its Use in a Sensitive Immunosensor.
    Nandhakumar P; Kim G; Park S; Kim S; Kim S; Park JK; Lee NS; Yoon YH; Yang H
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22419-22422. PubMed ID: 32875647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perspective for Single Atom Nanozymes Based Sensors: Advanced Materials, Sensing Mechanism, Selectivity Regulation, and Applications.
    Jin H; Ye D; Shen L; Fu R; Tang Y; Jung JC; Zhao H; Zhang J
    Anal Chem; 2022 Jan; 94(3):1499-1509. PubMed ID: 35014271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in Nanoporous Anodic Alumina-Based Biosensors to Detect Biomarkers of Clinical Significance: A Review.
    Rajeev G; Prieto Simon B; Marsal LF; Voelcker NH
    Adv Healthc Mater; 2018 Mar; 7(5):. PubMed ID: 29205934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strategies for the Development of Metallic-Nanoparticle-Based Label-Free Biosensors and Their Biomedical Applications.
    Kaushal S; Nanda SS; Samal S; Yi DK
    Chembiochem; 2020 Mar; 21(5):576-600. PubMed ID: 31634410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanozyme-based luminescence detection.
    Zhang J; Liu J
    Luminescence; 2020 Dec; 35(8):1185-1194. PubMed ID: 32506605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Advances in Electrochemical Sensing Strategies for Food Allergen Detection.
    Curulli A
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single Microfluidic Electrochemical Sensor System for Simultaneous Multi-Pulmonary Hypertension Biomarker Analyses.
    Lee G; Lee J; Kim J; Choi HS; Kim J; Lee S; Lee H
    Sci Rep; 2017 Aug; 7(1):7545. PubMed ID: 28790334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II).
    Wu J; Wang X; Wang Q; Lou Z; Li S; Zhu Y; Qin L; Wei H
    Chem Soc Rev; 2019 Feb; 48(4):1004-1076. PubMed ID: 30534770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleic acid-based ratiometric electrochemiluminescent, electrochemical and photoelectrochemical biosensors: a review.
    Wang Z; Yu R; Zeng H; Wang X; Luo S; Li W; Luo X; Yang T
    Mikrochim Acta; 2019 Jun; 186(7):405. PubMed ID: 31183569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytically active nanomaterials: a promising candidate for artificial enzymes.
    Lin Y; Ren J; Qu X
    Acc Chem Res; 2014 Apr; 47(4):1097-105. PubMed ID: 24437921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems.
    Khondakar KR; Dey S; Wuethrich A; Sina AA; Trau M
    Acc Chem Res; 2019 Aug; 52(8):2113-2123. PubMed ID: 31293158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of Electrochemical Aptasensors toward Clinical Diagnostics, Food, and Environmental Monitoring: Review.
    Li Z; Mohamed MA; Vinu Mohan AM; Zhu Z; Sharma V; Mishra GK; Mishra RK
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitive electrochemical biosensor for Uracil-DNA glycosylase detection based on self-linkable hollow Mn/Ni layered doubled hydroxides as oxidase-like nanozyme for cascade signal amplification.
    Liu T; Li Z; Chen M; Zhao H; Zheng Z; Cui L; Zhang X
    Biosens Bioelectron; 2021 Dec; 194():113607. PubMed ID: 34507096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional Nanomaterials Enhancing Electrochemical Biosensors as Smart Tools for Detecting Infectious Viral Diseases.
    Curulli A
    Molecules; 2023 Apr; 28(9):. PubMed ID: 37175186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 76.